We compare the highly clustered populations of very high redshift galaxies
with proto-clusters identified numerically in a standard ΛCDM universe
(Ω0=0.3,λ0=0.7) simulation. We evolve 256^3 dark matter
particles in a comoving box of side 150h^{-1}Mpc. By the present day there are
63 cluster sized objects of mass in excess of 10^{14}h^{-1}Mo in this box. We
trace these clusters back to higher redshift finding that their progenitors at
z=4--5 are extended regions of typically 20--40 Mpc (comoving) in size, with
dark halos of mass in excess of 10^{12}h^{-1}Mo and are overdense by typically
1.3--13 times the cosmological mean density. Comparison with the observation of
Lyman alpha emitting (LAEs) galaxies at z=4.86 and at z=4.1 indicates that the
observed excess clustering is consistent with that expected for a proto-cluster
region if LAEs typically correspond to massive dark halos of more than
10^{12}h^{-1}Mo. We give a brief discussion on the relation between high
redshift concentration of massive dark halos and present day rich clusters of
galaxies.Comment: 4 pages, 5 figures, Accepted for publication in ApJ Letter