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A RESIDUE FORMULA FOR THE INDEX OF A HOLOMORPHIC FLOW"

JOSE SEADE and -TATSUO SUWA

Let (v,P) be a normal, isolated complex analytic
singularity of dimension nxz1 , and consider germs of
holomorphic vector fields on V at P. One would like to be

able to distinguish different germs.

If P is a regular point of V , there are a number of
invariants that sometimes allow us to distinguish germs of vector

fields at P ; However, for P singular, little is known.

If X is a holomofphic vector field on 'V , singular only
at P, then a natural way for studying the geometry, the topology
and the dynamics of X near P , is to go up to a resolution of
P and see what happens there, see for instance [HH]. More
precisely, let

n:V s v,
be a resolution of P and let E = n—l(P) be the exceptional set
gf T . The solutions of X determine a non-singular
holomorphic foliation ¥ onva—{P} by immersed Riemann surfaces.
The strict transform of ¥ is a holomorphic foliation % of ¥
by complex curves, with singular set S contained in E . Since
n is a biholomorphism on ¥-E , the vector field X 1lifts to a
vector field ¥ on V—E, tangent to §. Thus one has several

types of invariants to look at:

Research partially supported by CONACYT, Mexico, grant
1206-E9203, and The Ministry of Education, Science and Culture,
Japan, Grant-in-Ald for Sclientific Research. :



a) We may forget that X is holomorphic and think of it as
a C”-vector field. As such, we can approximate it by a sequence
of vector fields {Yt} , defined on all of ¥ and having
non~degenerate singularities. The total number of singular
points of the Yt’s , counted with "signs", is independent of the
way we approximate X : This is the (total) index Ind(X,7) of X

in ¥ , introduced by Poincaré-Hopf, see [Mil.

b) The bundle T% , tangent to ¥ on ¥-S, can be extended
to a holomorphic line bundle L over all of ¥ . Thus one has
the Chern class c, (L) = cl(Tﬁ) c K277y . This is a
topological invariant of % , by [Gsv]. One also has the ncounal
oheal Q of & , defined by Q = TyL .

Ci(Q) € HZI(V;Z) , 1i=1,...,n, are linear combinations of

The Chern classes of Q ,

products of the Chern classes of TV and the class CI(L)' see
[AH] or §2 below.

c) One may consider the top Chern class cn(Q) of the
normal sheaf. We know, see §2 below, that the Chern class cn(Q)
can be considered as a relative class in Hzn(v,?—E;Z).

Essentially by [BB], this class is localized at the singular set
S cE:

c (Q) =Y pRes_ (%,2) ,
n c
ZcS n N
where the sum runs over the connected components of S, ResC (¥,2)
. n
is a ‘homology class in HO(Z;Z) that depends only on % near 2,

and u, is given by the inclusion HO(Z;Z) into Ho(ﬁ;Z),

followed by Poincaré-Lefschetz duality Ho(ﬁ;Z) = Hzn(v,?—E;Z)

If P is an isolated singularity of & , the term Res (#,Po)
n
is the corresponding Grothendieck residue, by [BB]. Thus it equals

the local Milnor number
dim O
n,P
p= o )
(Fl,...,Fn)
where the Fi’s are holomorphic functions that define the germ of

g at P, , c.f. [CLs,cCCs].




Several questions arise:

Q. 1. Is it possible to evaluate the index Ind(X,¥)
in terms of the above invariants of % 2.

Q. 2. Can we wuse all these invariants to define
something which depends only on the germ (V,P) and the vector
field X, and not on the choice of resolution of P 7.

Q. 3 If so, what kind of invariant is this 2.

In this work we study and partially answer ' these
questions. Question 1 is a special case of a more general
question: Let W be a connected, complex manifold, which is the
interior of a compact, c”-manifold with boundary M. = 3&W. ‘Let X
be a holomorphic vector field, defined and noh—singular, on a
neighbourhood U of M in W . Assume further that X |is
tangent on U, to a 1-dimensional holomorphic foliation F
defined on W and with compact singular locus S c W-U . Are
the invariants, or "residues", of Baum-Bott [BB] related to the
Poincaré-Hopf index of X 7. Theorem I below gives an answer to

this question, and also to question 1 above (see §2).

THEOREM I : Let X be a holomorphic vector field, defined and
non-singular on a neighbourhood U  of 8W, the boundary of a
complex manifold W which is the interior of a compact, smooth
manifold with non-empty  boundary. Suppose the holomorphic
foliation defined by X on U can be extended to a holomorphic
foiliation & on W , which is full in the sense of [BB]. ( So
its singular set S has codimension at least 2.) Then the total
(Poincaré-Hopf) index of X in W is :

Ind(X,W) = c,(F)ec_ . (QIW] + ¥ uRes_ (F,2)[W] ,
1 n-1 * c
. 2cS n
where cl(?) is the Chern class of ¥ relative to X ., [W] is

the fundamental cycle and the sum on the right runs over the

connected compoﬁents of the singular set S. In particular, if



the singular set S consists of isolated points P.,...,P_,

then
_ ‘ . r
Ind(X,W) = cl(?)'cn_l(Q)[W] + 121 By oo

where By is the local Milnor number of ¥ at the singular point

P. ,i=1,...,r.
i

Theorem II is of a different nature, closer to
singularities theory. In fact Theorem II is a consequence of a
deep theorem of Laufer, Steenbrink and Looijenga, see §1 below.
This gives an answer to questions 2 and 3 above, for complete
intersection germs of even dimension. The term Td* is a

ratinal linear combination of the Chern numbers of ¥ .

k-1 B
THEOREM II.  Let n =2k be even and let q_= L—llEET";E ,
where B is the kth—Bernoulli number, see [Hr]. Let (V,P)

“k
be an isolated complete intersection singularity (ICIS) of

dimension n , and let X be a continuous vector field on V ,
non-singular away from P . If X is the lifting of X to a
resolution 7 of P , then the rational number

~ *
Id(%, % + Lmd 1,
.. qn
depends only on the germ of ¥ at P and the homotopy class of

the vector field X near P, independently of the choice of
resolution of P ; Td*[?] is (see §1 below) the nth Todd
polynomial Tdn in the relative Chern numbers of ¥ , but taking
cn = 0. Furthermore,

~ o~ *' ~
Ind(X,¥) = Ind(X,7) + L (rd" (7] +p) ,
qn g
where Ind(X,V) is the index of X on V¥ at P and pg‘ is the

geometric genus of P.



If P 1is regular in VvV , Ind(X,V) is the usual local
index of Poincaré-Hopf; In general, if P is an ICIS, this is
essentially the local index of a vector field on a singular
variety, studied in [GSV, BG], see §1 below. The number 9,
above is the coefficient of <, in the hth— Todd polynomial
Tdn , by [BH]. For n > 1 odd, the coefficient of c, in Tdn
is 0 and this is why our method says nothing in these
dimensions. For an ICIS of dimension 1 in Ck, the statement
corresponding to Theorem II is:

Ind(X,¥) = Ind((X,7) - 25 ,
where & > 0 "measures" the number of double points concentrated
at P, see [Mi p.85, or Se p.68], and Ind(X,V) 1is the index of
X on V, so it is the element in nl(U(k)) = Z determined by the
map (V-{P}) - U(k) given by X and the gradient vector fields
of the functions that define the germ of ¥V at P , c.f. §1
below. (This follows from Milnor's formula,
u-1 = 28 -r ,

where I is the Milnor number and r is the number of
irreducible components of V at P, and the proof ‘is the same as -
that of Theorem II, replacing the theorem of Laufer, Steenbrink

and Looijenga by the above formula of Milnor.)

Theorem III is the sum of Theorems I and 1II

THEOREM 1III. Let n = 2k be even . Let qn be as
in theorem II. Let (V,P) be an ICIS of dimension n , and let
X be a holomorphic vector field on V, non-singular away from P.
If & is the strict transform of the foliation on V-{P}
determined by X , then the index of X on V¥V at P is:
Ind(X,V) =Zz uRes  (%,2) (7] + El(ﬁ)-cn_l(Q)[ﬁ] + é (1d" (7] +pg)
S n n

In particular, if the singularities of & are isolated, then the
first term on the right hand side is the sum of the locai Milnor

numbers.



For instance, if n = 2, the singularities of & are

*—v
necessarily isolated, the coefficient q, is L and Td [V] is

12
2 .
-%i , where K 1is the canonical class of the resolution. Thus
the formula above becomes,
r
Ind(X,¥) = &(F)c (@M + Tu + K+ 12:p,

: 1=1

In a subsequent work [SS], we ., study some natural

generalizations of &2 above: What happens when the dimension of
the leaves of ¥ is larger than 1 7. What if we have, on a
neighbourhood of the boundary, several vector fields tangent to
F ? , can we say anything for characteristic classes of W, %, Q ,
other than c, ?. Lemma 2.1 below contains a result in this

direction.

This work started when both authors were participating in
the "College on singularities" at the ICTP, Trieste, and it was
essentially finished when the first named author visited the
Hokkaido University . The first named author also visited IMPA,
at Rio de Janeiro, while working on it. The authors want to

thank these institutions for their support and hospitality.



81, VECTOR FIELDS AND THE TODD GENUS.

We recall [Hr] that the Todd sequence {Tdk} , kelN .,

is the (multiplicative) sequence of polynomials associated to the

b
power series 1% - This is a sequence of polynomials in
indeterminates Cl""’ck"" , such that Tdk is a rational
linear combination of CqreesCp » and if we assign the weight i
to 4 and weight 11+...+1r to the cup product ci1°...~cir ,
then Tdk is homogeneous of degree k . For example,

= 1
Tdyp =3 ¢ o

= —L (.2
Ty = 12 (e v e)

- L
Td3 = 24 %%

I S 2 2 _ 4
Td4 = 755 ( Cy *t CgCy * 3c2 + 4c201 cl) ,

*
and so on. Let us denote by Tdn the polynomial obtained from
the nth—Todd polynomial Tdn , replacing c, by 0 . In other
*

words, we write Td_ = Td_ + q c_ , where ¢ is the coefficient

n n n n « 1 5
of c in Td_ . Thus, for instance, Td, = =~ +c . (We refer

n n 2 12 1

to [Hr or M3] for basic material about the Todd genus.)

If W is a closed, connected, C -manifold of (real) even
dimension 2n , and a complex structure on its tangent bundle TW,

its Todd genus is defined by,

Td[W] = Tdn(cl,...,cn) [w] ]
where cl,_...,cn are the Chern classes of TW and {W] 1is the
fundamental cycle. If W has non-empty boundary M, then

HZD(W) % 0, so it is not interesting to speak of the Chern numbers
of W. However, let us suppose we are given a C®-vector field
X , defined and non-singular on a neighbourhood of the boundary
M. We may look at the primary obstruction for extending this to

a cross section of TW . This is a relative cohomology class



En(X) € Hzn(w,M;Z) that maps to the usual Chern class of TW ,

and evaluated on the fundamental cycle (W] equals the total
index of X in W . There are as many liftings of c, to a
relative class as elements in Hzn-l(M) 2 Z ', parametrizing the

possible indices that the vector fields as above can have.
Moreover, if the bundle 'I‘w|M is trivial, then the Chern classes
of TW vanish over the boundary M, hence each Chern class ci(W)
can be lifted to a relative class Ei(W). In general, there will
be many different liftings of each ci(W) ; However, as noted in
[LS] or I[L1], if i, j are both =1 then the cup product
Ei(W)-EJ(W) depends only on the absolute classes c, (W), cj(W)

Therefore, the Chern numbers of W involving the lower

dimensional classes Covee are well defined, depending

., C
’ n__l’
only on W. In this situation one may define the Tadd genus of

W nelatise ta X by
Td[W;X] = Td (e,,...,c _;,c (X))[W]

where Tdn is the nth—Todd polynomial, En(X) is the relative

Chern class determined by X and the term on the right means that

whenever we have a monomial of Tdn which 1is a product
c, *...*c, , we replace this by the lift ¢, +...°c, .
i i i i
1 r 1 r
Let us now denote by (V,P) an isolated, complete

intersection singularity (V,P) of complex dimension n z= 1.
For simplicity, we call such a germ an ICIS,- following [L2].
Let ¥ ©be a resolution of (V,P) ; This will play the role of
the above manifold W. By restricting the projection
t: V75V toa compact neighbourhood of P, we may think of ¥
as being a compact 2n-manifold with boundary M , the link of P
in V, and with a complex structure on its interior. Let
cs € HZi(ﬁ;Z), i=1,...,n, be the Chern classes of . A vector
field X on (v,P) determines a vector field X on a
neighbourhood of the boundary of ¥ ; The above discussion tells

us that X determines a lift En(i) of cn to a relative class,



‘with En(i)[V] = Ind(X,7). The tangent bundle T(V-{P}) 1is a
(smoothly) trivial bundle, because P is an ICIS, hence T17|M is
smoothly trivial. Thus one has the Jadd genus of V nelatixse

~

la X :

GV Tdn(El,...,c e (XN,

n-1""n

where Tdn is the nth—Todd polynomial, En(i) is the relative
Chern class determined by X and the term on the right means that
whenever we have a monomial of Tdn which is a decomposable

product ¢, *...*c, , we replace this by the lift ¢, -...-c,
| ‘r 11 ‘r

We remark that Td[¥,X] can be expressed as,

~ ~ *
Td(¥7,X] = qn-Ind(x,T/) + Td (1)
* * ~ ~
where Td [V] = Tdn(cl,...,cn_l,o)[V] depends only on ¥ , not on
X, and 9, is the coefficient of c, in the Todd polynomial
Td_ . If n>1 1is odd, then q_ is =zero , by [Hr]. For
n n k-1 B
n=1, ¢q is L and for n=2k , ¢ is L1 Tk , where
n th 2 n 2k!
Bk is the Xk '-Bernoulli number, see [Hr,BH].
If fl”"’fr are holomorphic functions that define the

germ (V,P) -, then the gradient vector fields Vfi of the fi’s
are linearly independent over C away from P , because P is an
ICIS, and they are orthogonal to V. Hence, up to homotopy

these vector fields define a smooth map,

(X’Vfl""'Vfr)lM Moo r+1,r4n
where wr+1 e is the Stiefel manifold of complex orthonormal
(r+1)-frames in €% ; W is (2n-2)-connected and its
r+l,r+n

first non-zero homotopy group is ) = Z, by Bott’s

n2n—1 wr+1,r+n
computations of the homotopy groups of the classical groups, see

for instance [Hul . Hence the maps from M into W o1 ron have a
r+i,

degree. Following [GSV], define the focal index of X on V at

P to be the degree of the above map (X,Vfl,“L,Vfr). This

definition of the local index on a singular variety was introduced



in [GSVY] for hypersurfaces, but the definition and its basic

properties are essentially the same (c.f. [BG]).

THEOREM 1II. Let n = 2k be even and let qn be the coefficient

of c, in Tdn . Let (V,P) be an ICIS of dimension n , and
let X be a vector field on V , non-singular away from P . If
X is the lifting of X to a resolution ¥ of P . Then the

rational number

Ind(X,7) + éan*[?] , |
depends only on the germ of ¥V at P and the homotopy class of
the vector field X , independently of the choice of resolution of
P . Furthermore,
1

Ind(X,) = Ind(X,7) + ¢ (Td" 7] p)

n
"where Ind(X,V) is the index of X at P and pg is the

geometric genus of P.

This theorem follows from the Laufer-Steenbrink-Looi jenga
theorem (see [L1]), that we re-formulate below- without proof,
together with lemmas 1.2 and 1.3 below. The theorem in [L1] is
in fact more generaI than we state below, but this is what we

need.

THEOREM [L11]. Let (V,P) be an ICIS of dimension n , let F
be a Milnor fibre of P and let ¥ be a resolution of P. Let
x(F) and x(¥) be the topological Euler-Poincaré characteristics

of F and 7, respectively. Then,
(F 7) + 1d (7] + (-1)P
qn.x ) = qnox( ) + T + (- pg ,

*N
where Td (V] and pg are as above.

10



1.2 LEMMA. Let X' be a vector field on V , which is

everywhere transversal to the link M of P in V . Then,
Ind(X',¥) = x(F) |

PROOF. The link M of P in V¥V is, by definition, the

intersection of V with a small sphere SC around P . From

[M1l, or using Ehresman fibration theorem, one knows that M is

isotopic in S8 to the intersection of S€ with a non-singular

fibre F' = fIl(t)n...nf;l(t) , for suitable t .  Thus, the
vector field X' <can be regarded as a continuous vector field on
a neighbourhood of F’nSe in F’ . Let F be F’nID8 , a Milnor
fibre of P. Then the gradient vector fields Vfl,...,Vfr are
linearly independent everywhere on F , because (v,pP) is an
ICIS. Hence, the obstruction for extending the map,

(X" V€, VE D |y s Mo rel, e

to all of F is the obstruction for extending X' to a vector
field on F . Since the degree of this map is the index of X’
on V¥V at P, it follows that Ind(X,V¥) can be regarded as the
obstruction for extending X’ to a continuous vector field on F.
The lemma now follows from the theorem of Poincaré-Hopf for
manifolds with boundary, because X' is everywhere transversal to
the boundary of F .

The following lemma is an immediate consequence of lemma
1.2 and a well known result in differential topology, saying that
the difference between the indices of two vector fields on a
manifold with boundary is independent of the topology of the
manifold away from a tubular neighbourhood of the boundary. (See

for instance [BG].)

11



1.3 LEMMA. Let X and X' be vector fields on V . Then,
Ind(X,V) - Ind(X’,V) = Ind(X,¥) - Ind(X’,7)

where Ind(X,7) and Ind(X’,7) are, respectively, the indices of

the liftings of X and X' to the resolution ¥ .

Theorem II now follows easily: By the theorem quoted above

one has,
= ] * — n
qn°x(.F) = q x(V) + Td (V] + (-1) Pg

If X' 1is a vector field as in lemma 1.2 and X' is its lifting
to ¥ , then the theorem of Poincaré-Hopf for manifolds with
boundary [M2] implies Ind(X’,¥) = x(¥). Hence lemma 1.2 yields,

*
’ R g 47 97 - n
q, Ind(X’,V) q, Ind (X ,V) + Td [V] + (-1) Py

If n is even , then q, # 0 and one has,

(1.4) Ind(X’,¥) = Ind(®,7) + % (1d (V] +p ) ,
q g

proving Theorem II for a vector field X’ transversal to the

link. If X 1is a vector field on V as in Theorem II, then
(1.5) Ind(X,¥) - Ind(X’,V¥) = Ind(X,¥) - Ind(¥X',%) ,
by lemma 1.3. By 1.4 one has,
~ ~ ¥* ~ .
Ind(%',7) = Ind(X',V) -+ (1d (7] +p ) ,
q, g
which together with 1.5 implies,
~ - LI
(1.6) Ind(X,”) = Ind(%,¥) + L (Td (7] +p ) ,
a, g
as claimed in Theorem II. Finally, that
md(%, 7 + a7,
9

is independent of the choice of resolution follows from 1.6 and
the fact that Ind(X,V) 1is defined intrisically, together with
the well known fact that the geometric genus pg is an invariant
of P.

12



§2. FOLIATIONS ON MANIFOLDS WITH BOUNDARY.

Let W be a compact, connected manifold with boundary
W # o , and a complex structure on its interior W . So W is
a complex manifold; We let n be the complex dimension of W
and we assume n>1. Let X be a nowhere-vanishing
holomorphic vector field on a neighbourhood U of &W . So X
defines a non-singular holomorphic foliation % = %(X) on U by
complex curves; We further assume that & is extended to a
holomorphic foliation on W , with singular set S of codimension
=2 . In practice we will take W to be the resolution ¥ of
an ICIS (V,P) and & the strict transform of the foliation on
V-{P} determined by a holomorphic vector field, as in §1 above.

Let T¥ be the bundle tangent to % on W-S ; so T%
is a holomorphic line sub-bundle of Twlw_s . This can always be
extended to a holomorphic line bundle L over W , which is not a
sub-bundle of TW on S : there is a bundle morphism w:L > TV,
which is not injective on S. The isomorphism class of L is
detefmined by F ; In fact, as a c®-vector bundle, L is
classified by its first Chern class, and this class depends only
on the topological type of % , by [GSV]. This is called the
Bhern clase aof the {foliatian and denoted cl(?). We note that the
vector field X trivializes the bundle L = T¥ on a
neighbourhcod U of the boundary &W. Thus we have a connection
DI for L on U, flat relative to the frame X ; D! can be

1 1
extended to a connection D, for L on W , flat on U. This

determines a representativ: of the Chern class 'cl(?) that
vanishes over dW , so it represents a class 51(?) € HZ(W,BW;Z).
(The Chern classes of vector bundles defined via differential
forms live in the cohomology with complex coefficients, but they

are in fact integral classes.)

13



We now think of L and TW as being locally free sheaves
on W of ranks 1 and n , respectively. The bundle map =«
induces an injection on the sheaf level and we have the nonumal
oheal Q , defined by the exact sequence of sheaves,

(*) 0 » L > TW > Q@ » 0.
We note that Q@ is not locaily free at the singular set S , but
the exact sequence above provides a resolution of Q by vector
bundles. Thus [AH], the total Chern class of Q is:

c(TW)
c(Q) F(T)_— »

where c¢(L) =1 + cl(?) , because L has rank 1.

2.1 LEMMA: Let ¢ = ¢(cl,...,cn) be a polynomial in
indeterminates Cl""’cn , With complex coefficients, homogeneous
of degree n. Then, there exist relative cohomology classes

$(Q) and 3(TW) in HZ™(W,8W;C) , such that:
a) ¢(Q) is localized at the singular set S of ¥ :

$(Q) = L Ha(Res (9,2))
2cS
where the sum runs over the connected components of the singular

set, Res (%,2) e HO(Z;C) is the Baum-Bott residue corresponding

¢
to the polynomial ¢ ; My is the composition «i, , where
L+ Hylzio) » Hy(W;C) is induced by the inclusion and

a HO(W;C) - Hzn(w,aw;c) is Lefschetz duality.

b)  One has,
$(TW) = 4(Q) + ¢ (Q,F)C, (%) ,

where o' (Q,%) is a «class in HZn—Z(w;C) depending on
Cl(Q)""'cn—l(Q) and El(?) » and it is computable from ¢.

c) Let En(Tw;X) € Hzn(W,M;Z) be the relative Chern class
determined (in §1) by the vector field X . Then,

c (TW;X) = En(Q) te (@rc (F)

14



One may also add that the image of ¢(Q) and @(TW) in the

absolute cohomology are the corresponding classes ¢(Q) and

¢(TW), however HZH(W;C) = 0, so this observation 1is not

interesting.

PROOF . We first recall from [BB] the construction of a "basic

connection" . On ‘W-S the foliation ¥ acts on the normal sheaf
Q: If

n:TH »> Q ,
is the projection, define on W-S ,
TF x Q _— Q
(u,n(v)) —  7(lu,v]) = [u,n(v)] ,
which is well defined because T% is closed under Lie brackets.

Thus one has a "partial connection" on Q ,
© © i ) =*
8 : C(Q) — C ((TFeTW) @ Q) = C (Hom(T%,Q)e(T WeQ)) ,
defined by é&(s) = (u - [u,s], 8s) , where TW is the conjugate

T™W © TH , and 8

R

of TW in its complexification T = T_W e C

R
is the E—Operator. It is easy to see [BB] that there exists a
connection D, for Q on W-S lifting & :
D—l

) o, *
cC Q) ———C(t Q)

pel

C*((TF o ™M) © Q)
where p 1is the canonical surjection . Any connection on @
lifting the partial connection 3 is called [BB] a b&asic
cannection.

Now, on W-S one has a splitting,
W = T @ Q
On a neighbourhood U of the boundary &8W , T¥ has the flat

connection Di , determined by the vector field X . This can be
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extended to a connection D1 on W, by [BB;4.41), so one has

@D_, for TW on W-S.

a connection Do =D 1

1

Let {Za} be the connected components of the singular set

S . For each component 2OC we choose a regular neighbourhood
Ua of Za and a compact set Za , so that: i)
Uu > Za > Intza > Za , ii) Ua NnU=o and iii) Ua n UB =2
if a=pB. Then by [BB;4.41], ﬁhere exists a connection D0 on
W for TW, which coincides with Dé on W - Z, where § = UZOC .
Thus one has connections. D0 R D_1 and D1 , such that :

i) D_1 is basic for Q on W-S. \

ii) D1 is a connection for L on all of W , and it is flat

relative to the vector field X on a neighbourhood U of
the boundary aV.

Ciii) D0 is a connection for TW on W , and DO = D1@>D__1 on
W-Z.
The connections Dj » J=0,1,-1 , determine curvature

matrices KO , Kl and K_1 , for TW, T¥ and Q , respectively .
If oi(KJ) is the 1 "-symmetric function in the entries of Kj ,
and [oi(Kj)] is its class in the de Rham cohomology, then the

Chern classes of the corresponding bundles are given by,

=Rk
ci(TW) = (-EE—)'[vi(KO)] ,
_ (v-1
cl(T?) = (75;)'[¢1(K1)] )
and on W-Z, -
SRR
@ = (FL)e w1,
see [BB or Mil. By 1iii) above, on W-X one has,
- _ J,
oi(K_l) = ¥ ( 01(K1)) o, (Ky)

j+k=i

We observe that the right hand side is actually defined'on all of

W, so we can think of it as extending oi(K_l) over I . If we

set

16



w, = Y (-
J+k=i
over W , then ws defines the Chern class ci(Q) of the sheaf

Q on W, see [AH].

j.
LK) ee (k)

The class ¢(Q) 1is represented by the form ¢[w1,...,wn] ,
V-1 )n

modulo the normalization constant ( /Zn

with ¢(01(K_1),...,0n(K_1)) on W-Z. By Bott's vanishing

, which coincides

theorem, the latter form vanishes identically on W-z. Thus
¢(w1,...,wn) defines a relative cohomology class ¢(Q), which is
the class in the statement of 2.1 above. Moreover, the
restriction of ¢(w1,...,wn) to each ‘Ua defines a class in

Hzn(ua,aua;c) » and its image by the composition of Lefschetz

duality Hzntua,aua;C) > HO(Ua;C) and the inverse of the natural
isomorphism HO(Za;C) = HO(Ua;C) , iIs the class Res (?;Za) by

¢

definition. Thus we have a). To prove b), note that
o, (Ky) = Wt o, (K
Since D1 is flat on U, oltK ) vanishes on U and it
represents the relative class 51(?). Hence we see that
¢(01(K0),...,0n(K0)) represents a relative cohomology class
é(TW) satisfying the identitiy of b). In particular, if
¢ = C, » We have
c (TW) = c (Q) + =g (Q)ec (F)

Thus, to complete the proof of 2.1 we only need to show that the
above claéé En(TW) is the Chern class En(Tw,X) of §1. For
this we recall, from §1 above, that the difference d(cn,cg)
between two relative Chern classes c, cg is given by a
contribution of the coboundary map,
8 W Naw) > W, eW;2)

On a neighbourhood U of &8W. the sheaf Q is actually a vector
bundle, and one has a splitting TWIu = QlU ® T?lu . On U, the
class En(Q) is identically O , because Q has rank n-1.

Hence on U one has,
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c (TW) = ¢, (Free _,(Q)

The result follows because 51(?)cn_1(Q) = En(Tw,X) on U ,
since Q is a vector bundle there, and in both cases the
characteristic class in question is relative because it is the
obstruction for extending the vector field X +to the interior of
W.

Note that since En(TW) , 81(?) , and c__,(Q) are integral
classes, En(Q) is also integral and the identity in <¢) holds in
H" (W, aW; 2) .

We now have Theorem I, stated in the introduction:

THEOREM I: Let X Dbe a holomorphic vector field, defined and
non-singular on a neighbourhood of &8W, the boundary of a complex
manifold W which 1is the interior of a compact, smooth
manifold with non-empty boundary. Then the total (Poincaré-Hopf)

index of X in W 1is :

Ind(X,W) = El(?)'c (Q)IW] + ¥ p,Res (%,2)W] ,
n-1 c
Z2c¢S n
where (W] is the fundamental cycle. Moreover, if the singular
set S consists of isolated points Pl""’Pr , then
’ r
Ind(X,W) = & (F)c (@M + 151 T

where g is the local Milnor number of & at the singular point

The first statement in this theorem follows from 2.1
together with the fact, noted in §1 above, that one has AEn(TW)[W]
= Ind(X,W). The second claim follows from this and the fact [BB],

that at each singular point Pi , the Baum-Bott residue agrees
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with the corresponding Grothendieck residue, which equals the
intersection number By Alternatively, one can prove the

second statement via differential topology: Away from the points

Pl""’Pr » Q@ 1s a vector bundle; Therefore, away from these
points, the class cn-l(Q) is the first obstruction for
constructing a cross section & of Q , (C”-) transversal to the
zero section of Q . Hence the zero-locus of & is a smooth
submanifold ZQ of w—{Pl,...,Pr} of real dimension 2 . This
submanifold may extend to the boundary of W, so it represents a
homology class [ZQ] e,HZ(W*,aw;Z)A. where W* is W minus
small open balls Dl""’Dr around the singular points. The

*
natural map from HZ(W ,0W;Z) into HZ(W,aw;Z) is an
isomorphism, because one has the exact sequence of the triple
* .
(W,W ,8W),
* * . *
e H3(W,W )} - HZ(W ,0W; Z) = Hz(w,aw;z) - HZ(W,W VZ) =5 ...

Il i
0 0

Thus ZQ actually represents a homology class [ZQ] € HZ(W,BW;Z),

which is isomorphic to HZD—Z(W;Z), by Poincaré-Lefschetz duality.
Its dual is the Chern class cn—l(Q)' Similarly, the class
61(?) is dual to the (2n-2)-submanifold Z; of W , obtained by
intersecting the zero-section of T?Iw* , with a non-zero section

¥ of this bundle, which is transversal to the zero-section and

restricts to X on 4W. Since X 1is non-zero on 4V, Zg

*
actually represents a class in (W ;Z), which is isomorphic

to

H2n—2

H2n_2(w;2) = HZ(W,BW;Z). The above intersection number

81(?)°cn_1(Q)[W] is the transverse intersection of & with

Q

ZSr . We may extend ¥ to the interior of the balls Dl""’Dr ,
being tangent to ¥ and singular only at Pl”"’Pr , so its
local index at each Pi is the local Milnor number By by [CLS
or GSV]. We may also multiply & by an adequate bump function,
to make it zero on &8W and on the boundary spheres 6D1,...,8Dq.
Thus, adding up the vector fields ¢ and & , we obtain a
vector field X on W that agrees with X near &W , it is
tangent to F near the singular points Pl,...,Pr , and its
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remainning singuiarities are the intersection points ZQnZSz

Hence,

Ind(X,W) = Ind(X,W) = El(sf)ocn_l(Q)[m +i

e~
=

1 1

as stated.

We remark that this also provides a new proof of the well
known fact, that the Grothendieck residue of & at an isolated

singularity Pi , is the intersection number

On p
p, = dim —/—m———— ,
i (Fl""’Fn)
where F = (Fl,...,Fn) is a (local) holomorphic vector field on
W at P, that spans ¥ on a neighbourhood of P : In this

case we take W to be a small neighbourhood D of P
Theorem II says,

Ind(F;W) = p*(Resc (F,P))[W] ,
n
since El(?) and cn—l(Q) vanish because D 1is contractible.

The left hand side is the local index of F at P, and this

equals the Milnor number pu . The right hand side equals'the

corresponding Grothendieck residue, by [BBI]. '
Adding up theorems I and II we arrive to Theorem III,

stated in the introduction:

THEOREM III. Let n =2k be even . Let qn be the

coefficient of c, in Tdn . Let (v,P) be an ICIS of
dimension n , and let X be a holomorphic vector field on V ,
non-singular away from P . If § is the strict transform of
the foliation on V-{P} determined by X , then the index of X

on V at P \is:

P2 ~ ~ 1 *
Ind(X,V) = g, 1% . 7 &
nd ( ) zggp*Rescn( z2)[V] + cl(?) cn_l(Q)[ ]+ qn(Td (71 +pg)

In particular, if the singularities of g are isolated; then the
first term on the right hand side is the sum of the local Milnor

numbers.

20



REFERENCES

[AH]

[BB]

[BG]

[BH]

[CLS]

[ccs]

[GSV]

[HH]

(Hr]

(Hul

[Ke]

{La]

[LS]

[L1]

M.F. Atiyah and F. Hirzebruch. Analytic cycles on complex
manifolds. Topology 1 (1962), 25-45.

P. Baum and R. Bott. Singularities of holomorphic
foliations. = J. Diff. Geom. 7 (1972), 279-342,.

Ch. Bonatti and X. Gomez-Mont. The index of holomorphic
vector fields on singular varieties I. To be published in
the proceedings of the International Symposium on
Holomorphic Dynamical Systems, Rio de Janeiro, 1992.

A. Borel and F. Hirzebruch. Characteristic classes and
homogeneous spaces III. Am. J., Math. 82 (1969), 491-504.

C. Camacho, A. Lins and P. Sad. Topological invariants
and equidesingularization for holomorphic vector fields.
J. of Diff. Geom. 20 (1984), 143-174.

C. Camacho, F. Cano and P. Sad. Absolutely isolated
singularities of holomorphic vector fields. Inv. Math. 98
(1989), 351-369.

X. Gémez-Mont, J.A. Seade and A. Verjovsky. The index of a
holomorphic flow with an isolated singularity. Math.

Annalen 291 (1991),737-751.

G. Hector and U. Hirsch. Intoduction to the geometry of

foliations. Braunschweig Wiesbaden: Vieweg 1981,

F. Hirzebruch. "Topological methods in algebraic geometry".
Springer Verlag 1966 .

D. Husemoller. Fibre bundles. Springer Verlag.

M. Kervaire . Relative characteristic classes. Am. J. of
Maths. 79 (1957), 517-558.

H.B. Laufer. On pu for surface singularities. AMS Proc.
Symp. Pure Maths. 30 (1977), part I, 45-49.

B. Li and J. Seade. Framings on algebraic knots. Quart.
J. Math. Oxford (2), 38 (1987), 297-306.

E. Looijenga. "Isolated singular points on complete
intersections". London Math. Soc., Lect. Notes 77 (1984).

21



(2]
(M1
(M2]
[M3]
[ss]
[Sel

(st]

E. Looijenga. Riemann Roch and smoothings of
singularities. Topology 25 (1986), 293-302.

J. Milnor. "Topology from the differentiable viewpoint."
Univ. Press of Virginia (1965).

J. Milnor. "Singular points of complex hypersurfaces".
Annals of Math. Studies 61. Princeton Univ. Press (1968).

J. Milnor. "Characteristic classes". Annals of Math.
Studies. Princeton Univ. Press.

J. Seade and T. Suwa. Residues and singularities of
holomorphic foliations on open manifolds. In preparation.

J.P. Serre. Groupes algébriques et corpes de classes,
Hermann, Paris, 1959.

J.H.M. Steenbrink. Mixed Hodge structures associated with
isolated singularities. AMS Proc. Symp. Pure Maths. 40
(1983), part 2, 513-536.

José Seade,

Departamento de Matemiticas,

Instituto Tecnolégico Auténomo de México,
R{o Hondo 1, San Angel, México D.F.

and

Instituto de Matem4ticas,
Universidad Nacional Auténoma de México.

Tatsuo Suwa,

Department of Mathematics,
Hokkaldo University,
Sapporo, Japan.

22



