11 research outputs found

    Active emulsions in living cell membranes driven by contractile stresses and transbilayer coupling

    Full text link
    The spatiotemporal organisation of proteins and lipids on the cell surface has direct functional consequences for signaling, sorting and endocytosis. Earlier studies have shown that multiple types of membrane proteins including transmembrane proteins that have cytoplasmic actin binding capacity and lipid-tethered GPI-anchored proteins (GPI-APs) form nanoscale clusters driven by active contractile flows generated by the actin cortex. To gain insight into the role of lipids in organizing membrane domains in living cells, we study the molecular interactions that promote the actively generated nanoclusters of GPI-APs and transmembrane proteins. This motivates a theoretical description, wherein a combination of active contractile stresses and transbilayer coupling drive the creation of active emulsions, mesoscale liquid ordered (lo) domains of the GPI-APs and lipids, at temperatures greater than equilibrium lipid-phase segregation. To test these ideas we use spatial imaging of homo-FRET combined with local membrane order and demonstrate that mesoscopic domains enriched in nanoclusters of GPI-APs are maintained by cortical actin activity and transbilayer interactions, and exhibit significant lipid order, consistent with predictions of the active composite model

    Joining forces: crosstalk between biochemical signalling and physical forces orchestrates cellular polarity and dynamics.

    No full text
    Dynamic processes like cell migration and morphogenesis emerge from the self-organized interaction between signalling and cytoskeletal rearrangements. How are these molecular to sub-cellular scale processes integrated to enable cell-wide responses? A growing body of recent studies suggest that forces generated by cytoskeletal dynamics and motor activity at the cellular or tissue scale can organize processes ranging from cell movement, polarity and division to the coordination of responses across fields of cells. To do so, forces not only act mechanically but also engage with biochemical signalling. Here, we review recent advances in our understanding of this dynamic crosstalk between biochemical signalling, self-organized cortical actomyosin dynamics and physical forces with a special focus on the role of membrane tension in integrating cellular motility.This article is part of the theme issue 'Self-organization in cell biology'

    Active remodeling of cortical Actin regulates spatiotemporal organization of cell surface molecules

    Get PDF
    Restricted Access.Many lipid-tethered proteins and glycolipids exist as monomers and nanoclusters on the surface of living cells. The spatial distribution and dynamics of formation and breakup of nanoclusters does not reflect thermal and chemical equilibrium and is controlled by activeremodeling of the underlying corticalactin. We propose a model for nanoclustering based on active hydrodynamics, wherein cell surface molecules bound to dynamic actin are actively driven to form transient clusters. This consistently explains all of our experimental observations. Using FCS and TIRF microscopy, we provide evidence for the existence of short, dynamic, polymerizing actin filaments at the cortex, a key assumption of the theoretical framework. Our theory predicts that lipid-anchored proteins that interact with dynamic actin must exhibit anomalous concentration fluctuations, and a cell membrane protein capable of binding directly to actin can form nanoclusters. These we confirm experimentally, providing an active mechanism for molecular organization and its spatiotemporal regulation on the plasma membrane

    Live Cell Plasma Membranes Do Not Exhibit a Miscibility Phase Transition over a Wide Range of Temperatures

    No full text
    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14–37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane
    corecore