52 research outputs found
Diet-induced obesity in mice overexpressing neuropeptide y in noradrenergic neurons
Neuropeptide Y (NPY) is a neurotransmitter associated with feeding and obesity. We have constructed an NPY transgenic mouse model (OE- mouse), where targeted overexpression leads to increased levels of NPY in noradrenergic and adrenergic neurons. We previously showed that these mice become obese on a normal chow. Now we aimed to study the effect of a Western-type diet in OE- and wildtype (WT) mice, and to compare the genotype differences in the development of obesity, insulin resistance, and diabetes. Weight gain, glucose, and insulin tolerance tests, fasted plasma insulin, and cholesterol levels were assayed. We found that female OE- mice gained significantly more weight without hyperphagia or decreased activity, and showed larger white and brown fat depots with no difference in UCP-1 levels. They also displayed impaired glucose tolerance and decreased insulin sensitivity. OE- and WT males gained weight robustly, but no difference in the degree of adiposity was observed. However, 40% of but none of the WT males developed hyperglycaemia while on the diet. The present study shows that female OE- mice were not protected from the obesogenic effect of the diet suggesting that increased NPY release may predispose females to a greater risk of weight gain under high caloric conditions.</p
Recommended from our members
MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability
Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13−/−) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42%) at day 21 in Mmp13−/− mice. Granulation tissue in Mmp13−/− mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13−/− mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13−/− mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13−/− granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13−/− mice compared to WT mice. Mmp13−/− mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis
Peripherally Administered Y-2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice
Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y-2-receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y-2-receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y-2-receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPYD beta H) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y-2-receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPYD beta H and WT mice feeding on chow or Western diet. Treatment with Y-2-receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y-2-receptors induced obesity in WT mice, whereas OE-NPYD beta H mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y-2-receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y-2-receptor antagonism has beneficial effects on metabolic status
Hydroxysteroid (17 beta) dehydrogenase 12 is essential for metabolic homeostasis in adult mice
Hydroxysteroid 17-beta dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within six days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Pro-inflammatory cytokines, such as interleukin 6 (IL-6), IL-17 and granulocyte-colony stimulating factor were increased in the HSD17B12cKO mice indicating inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in the fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis, and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice.Peer reviewe
Determinants of left ventricular diastolic function-The Cardiovascular Risk in Young Finns Study
Decreased left ventricular (LV) diastolic function is associated with increased all-cause mortality and risk for a heart failure. The determinants of LV diastolic function have been mainly studied in elderly populations; however, the origin of LV heart failure may relate to the lifestyle factors acquired during the life course. Therefore, we examined biochemical, physiological, and lifestyle determinants of LV diastolic function in 34-49-year-old participants of the Cardiovascular Risk in Young Finns Study (Young Finns Study). In 2011, clinical examination and echocardiography were performed for 1928 participants (880 men and 1048 women; aged 34-49 years). LV diastolic function was primarily defined using E/e-ratio (population mean 4.8, range 2.1-9.0). In a multivariate model, systolic blood pressure (P <0.005), female sex (P <0.005), age (P <0.005), waist circumference (P = 0.024), smoking (P = 0.028), serum alanine aminotransferase (P = 0.032) were directly associated with E/e-ratio, while an inverse association was found for height (P <0.005). Additionally, a higher E/e-ratio was found in participants with concentric hypertrophy compared to normal cardiac geometry (P <0.005). Other indicators of the LV diastolic function including E/A-ratio and left atrial volume index showed similarly strong associations with systolic blood pressure and age. In conclusion, we identified systolic blood pressure, waist circumference and smoking as modifiable determinants of the LV diastolic function in the 34-49-year-old participants of the Young Finns Study.Peer reviewe
Hydroxysteroid (17β) dehydrogenase 12 is essential for metabolic homeostasis in adult mice
Hydroxysteroid 17β dehydrogenase 12 (HSD17B12) is suggested to be involved in the elongation of very long chain fatty acids. Previously, we have shown a pivotal role for the enzyme during mouse development. In the present study we generated a conditional Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding mice homozygous for a floxed Hsd17b12 allele with mice expressing the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene inactivation was induced by administering tamoxifen to adult mice. The gene inactivation led to a 20% loss of body weight within 6 days, associated with drastic reduction in both white (83% males, 75% females) and brown (65% males, 60% females) fat, likely due to markedly reduced food and water intake. Furthermore, the knockout mice showed sickness behavior and signs of liver toxicity, specifically microvesicular hepatic steatosis and increased serum alanine aminotransferase (4.6-fold in males, 7.7-fold in females). The hepatic changes were more pronounced in females than males. Proinflammatory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte colony-stimulating factor, were increased in the HSD17B12cKO mice indicating an inflammatory response. Serum lipidomics study showed an increase in the amount of dihydroceramides, despite the dramatic overall loss of lipids. In line with the proposed role for HSD17B12 in fatty acid elongation, we observed accumulation of ceramides, dihydroceramides, hexosylceramides, and lactosylceramides with shorter than 18-carbon fatty acid side chains in the serum. The results indicate that HSD17B12 is essential for proper lipid homeostasis and HSD17B12 deficiency rapidly results in fatal systemic inflammation and lipolysis in adult mice
Cardiovascular risk factors in childhood and left ventricular diastolic function in adulthood
BACKGROUND AND OBJECTIVES: Cardiovascular risk factors, such as obesity, blood pressure, and physical inactivity, have been identified as modifiable determinants of left ventricular (LV) diastolic function in adulthood. However, the links between childhood cardiovascular risk factor burden and adulthood LV diastolic function are unknown. To address this lack of knowledge, we aimed to identify childhood risk factors associated with LV diastolic function in the participants of the Cardiovascular Risk in Young Finns Study. METHODS: Study participants (N = 1871; 45.9% men; aged 34-49 years) were examined repeatedly between the years 1980 and 2011. We determined the cumulative risk exposure in childhood (age 6-18 years) as the area under the curve for systolic blood pressure, adiposity (defined by using skinfold and waist circumference measurements), physical activity, serum insulin, triglycerides, total cholesterol, and high- and low-density lipoprotein cholesterols. Adulthood LV diastolic function was defined by using E/é ratio. RESULTS: Elevated systolic blood pressure and increased adiposity in childhood were associated with worse adulthood LV diastolic function, whereas higher physical activity level in childhood was associated with better adulthood LV diastolic function (P,.001 for all). The associations of childhood adiposity and physical activity with adulthood LV diastolic function remained significant (both P,.05) but were diluted when the analyses were adjusted for adulthood systolic blood pressure, adiposity, and physical activity. The association between childhood systolic blood pressure and adult LV diastolic function was diluted to nonsignificant (P =.56). CONCLUSIONS: Adiposity status and the level of physical activity in childhood are independently associated with LV diastolic function in adulthood.Peer reviewe
Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress
The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall
Metabolic Regulation in Progression to Autoimmune Diabetes
Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede β-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes
Neuropeptide Y in the noradrenergic neurons induces the development of cardiometabolic diseases in a transgenic mouse model
Neuropeptide Y (NPY) is a neuropeptide widely expressed in the brain and a peptide transmitter of sympathetic nervous system (SNS) co-released with noradrenaline (NA) in prolonged stress. Association of a gain-of-function polymorphism in the human NPY gene with dyslipideamia, diabetes and vascular diseases suggests that increased NPY plays a role in the pathogenesis of the metabolic syndrome in humans. In the hypothalamus, NPY plays an established role in the regulation of body energy homeostasis. However, the effects of NPY elsewhere in the brain and in the SNS are less explored. In order to understand the role of NPY co-expressed with NA in the sympathetic nerves and brain noradrenergic neurons, a novel mouse model overexpressing NPY in noradrenergic neurons was generated. The mouse displays metabolic defects such as increased adiposity, hepatosteatosis, and impaired glucose tolerance as well as stress-related hypertension and increased susceptibility to vascular wall hypertrophy. The mouse phenotype closely reflects the findings of the several association studies with human NPY gene polymorphisms, and fits with the previous work on the effects of stress-induced NPY release on metabolism and vasculature. Thus, in addition of promoting feeding and obesity in the hypothalamus, NPY expressed in the noradrenergic neurons in the brain and in the SNS induces the development of cardiometabolic diseases
- …