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Hydroxysteroid 17� dehydrogenase 12 (HSD17B12) is suggested to
be involved in the elongation of very long chain fatty acids. Previ-
ously, we have shown a pivotal role for the enzyme during mouse
development. In the present study we generated a conditional
Hsd17b12 knockout (HSD17B12cKO) mouse model by breeding
mice homozygous for a floxed Hsd17b12 allele with mice expressing
the tamoxifen-inducible Cre recombinase at the ROSA26 locus. Gene
inactivation was induced by administering tamoxifen to adult mice.
The gene inactivation led to a 20% loss of body weight within 6 days,
associated with drastic reduction in both white (83% males, 75%
females) and brown (65% males, 60% females) fat, likely due to
markedly reduced food and water intake. Furthermore, the knockout
mice showed sickness behavior and signs of liver toxicity, specifically
microvesicular hepatic steatosis and increased serum alanine amino-
transferase (4.6-fold in males, 7.7-fold in females). The hepatic
changes were more pronounced in females than males. Proinflamma-
tory cytokines, such as interleukin-6 (IL-6), IL-17, and granulocyte
colony-stimulating factor, were increased in the HSD17B12cKO mice
indicating an inflammatory response. Serum lipidomics study showed
an increase in the amount of dihydroceramides, despite the dramatic
overall loss of lipids. In line with the proposed role for HSD17B12 in
fatty acid elongation, we observed accumulation of ceramides, dihy-
droceramides, hexosylceramides, and lactosylceramides with shorter
than 18-carbon fatty acid side chains in the serum. The results indicate
that HSD17B12 is essential for proper lipid homeostasis and
HSD17B12 deficiency rapidly results in fatal systemic inflammation
and lipolysis in adult mice.

dihydroceramide; lipid; liver; toxicity; weight loss

INTRODUCTION

Fourteen different hydroxysteroid 17� dehydrogenase
(HSD17B) enzymes have been characterized as enzymes
that have the ability to catalyze the reaction between 17-
ketosteroids and 17�-hydroxysteroids, at least in vitro.
HSD17Bs are encoded by different genes resulting in pro-

teins with distinct amino acid sequences, and they present
with different subcellular localizations as well as varying
cofactor and substrate preferences [see review by Marchais-
Oberwinkler et al. (39)]. All, except HSD17B5, belong to
the very large family of short-chain dehydrogenase/reduc-
tase (SDR) enzymes, known for their NAD(H)- or NA-
DP(H)-dependent oxidoreductase activity. Several of the
HSD17B enzymes are involved in the metabolism and
synthesis of various lipids. For example, HSD17B4 is in-
volved in the peroxisomal oxidation of fatty acids (7),
whereas HSD17B8 has been suggested to have a role in
the mitochondrial synthesis of fatty acids (10, 64) and
HSD17B10 is capable for mitochondrial beta-oxidation of
fatty acids (26). HSD17B7 is involved in de novo choles-
terol synthesis (32), HSD17B12 is expected to be involved
in long-chain fatty acid elongation (41), and HSD17B13 was
recently shown to be a lipid droplet-associated protein (29)
involved in lipid homeostasis in the liver (1).

HSD17B12 is widely expressed in both human and mu-
rine tissues (Fig. 1A; see https://genevisible.com/tissues/HS/
UniProt/Q53GQ0 and other expression data banks). The
enzyme was originally characterized as an enzyme convert-
ing palmitic acid to arachidonic acid (AA; 41). The view
that HSD17B12 is involved in fatty acid chain elongation is
further supported by several studies. The enzyme expression
was shown to be regulated by sterol regulatory element-
binding protein (SREBP), a key regulator of several en-
zymes involved in lipid metabolism and fatty acid and
cholesterol biosynthesis (42). Furthermore, knockdown of
the Hsd17b12 expression in cultured SK-BR-3 breast cancer
cells resulted in reduced cell proliferation, whereas the
proliferation was restored by arachidonic acid treatment
(43). Our in vivo study applying a mouse model with a
hypomorphic Hsd17b12 showed that a reduced expression
of the gene in the ovaries resulted in failure in oogenesis and
ovulation, and the phenotype was associated with a decrease
in the intraovarian concentration of AA and several of its
downstream metabolites, including several prostaglandins
(33). Similarly, the amount of AA was decreased in embry-
onic stem cells (ESCs) presenting only one functional copy
of the gene (46).Correspondence: M. Poutanen (matti.poutanen@utu.fi).
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Deleting the Hsd17b12 gene from the mouse germ line
resulted in early embryonic lethality at embryonic day 9.5
(E9.5) at the latest (4, 46). A more detailed analysis of the
knockout (KO) embryos revealed that the embryos initiate
gastrulation but their development was disrupted during early
organogenesis, indicating that Hsd17b12 expression is essen-
tial for proper embryonic growth and differentiation. More
recently, the fatty acid elongation by HSD17B12 has been
shown to play a role in the development of inflammation and
cancer (14, 34, 43, 66), and in line with these studies,

HSD17B12 was also associated with a poor prognosis of
ovarian cancer in a recent genome-wide association study (61).
The role of HSD17B12 in ovarian cancer was also indicated by
a genome-wide CRISPR/Cas screen of numerous cancer cell
lines (3).

In the current study, we aimed to further characterize the in
vivo function of HSD17B12 by generating Hsd17b12 gene
deletion in adulthood by utilizing the Cre-lox approach, allow-
ing us to overcome the embryonic lethality observed in mice
with the germ line deletion.
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Fig. 1. Hydroxysteroid 17� dehydrogenase 12 (Hsd17b12) expression, body weight, and body composition in mice with induced HSD17B12 deletion in
adulthood. A: Hsd17b12 expression in the liver, brown adipose tissue (BAT), gonadal fat, adrenals, testis, hypothalamus, thalamus, cerebral cortex, spleen,
kidney, and colon of HSD17B12cKO male mice 6 days postinduction. [Cre� lox/wild type (wt), vehicle (Veh), n � 3–5 mice; Cre� lox/wt, tamoxifen
(Tam), n � 3– 6 mice; Cre� lox/lox, Veh, n � 4 –5 mice; Cre� lox/lox, Tam, n � 4 – 6 mice.] Two liver samples of Cre� lox/wt were used as positive
controls with every sample set, and the expression level in them was set to 1. The expression levels in other tissues were proportioned to that of the positive
controls. The results were analyzed with one-way ANOVA. B: the body weight of HSD17B12cKO males and females decreased drastically within 6 days
from the induction of Cre recombination. �, Control (CTRL) males (n � 10 –23 mice); Œ, knockout (KO) males (n � 17–29 mice); �, CTRL females
(n � 7–20 mice); □, KO females (n � 7–15 mice). The CTRL (Cre� lox/wt, Tam) and KO (Cre� lox/lox, Tam) groups in both sexes were compared
with each other at each time point using the t test. C: body fat mass (top left), lean mass (top right), ratio of fat mass to lean mass (bottom left), and body
water content (bottom right) of HSD17B12cKO mice on day 6 compared with the control mice. (Male Cre� lox/wt, Tam, n � 6 mice; male Cre� lox/lox,
Tam, n � 7 mice; female Cre� lox/wt, Tam, n � 7 mice; female Cre� lox/lox, Tam, n � 6 mice.) The CTRL (Cre� lox/wt, Tam) and KO (Cre� lox/lox,
Tam) groups in both sexes were compared with each other using the t test. D: subcutaneous white adipose tissue (WAT) and BAT depots of 10-wk-old
male mice were stained with periodic acid-Schiff (PAS) stain. Subcutaneous white fat (panels at top) and brown fat (panels at bottom). Scale bars, 100
�m. *P � 0.05, **P � 0.01, ***P � 0.001.

E495HSD17B12 IS ESSENTIAL FOR METABOLIC HOMEOSTASIS

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00042.2020 • www.ajpendo.org
Downloaded from journals.physiology.org/journal/ajpendo at Univ of Helsinki (128.214.204.171) on January 19, 2021.



MATERIALS AND METHODS

Generation of Mouse Lines with Conditional Inactivation of
Hsd17b12

The targeting vector for Hsd17b12 (PGS00030_C_C05) was ob-
tained from the European Conditional Mouse Mutagenesis Program
(EUCOMM). In the construct, exon 2 of the Hsd17b12 gene was
flanked by loxP sites, and a lacZ as well as neo cassette was flanked
by flippase recognition target (FRT) sites. The vector was linearized
and electroporated into G4 hybrid mouse embryonic stem cells (G4,

129S6B6F1) for homologous recombination with standard proce-
dures. To identify the properly targeted clones, the colonies were
screened with specific primers for the wild-type (wt) and the mutated
allele (Table 1). The proper homologous recombination was then
confirmed by sequencing. Thereafter, the lacZ-neo cassette was re-
moved from the selected ESC clones by flippase (Flp) recombination,
and the cells were injected into C57BL/6N mouse blastocysts. The
blastocysts were then surgically transferred into pseudopregnant fos-
ter mothers (NMRI strain). The resulting chimeric offspring were
genotyped and mated with wt C57BL/6NCrl mice to produce the F1

Table 1. Primers used for genotyping PCR and qRT-PCR assays

Target Strand Sequence (5=–3=) Amplicon Size, bp Annealing T, °C

Screening PCR
17bHSD12Arm5GF2 For GCATGCTTCTCTTCTTTGTT 5,314 55.0
17bHSD12Arm5UR1 Rev TACATAGTTGGCAGTGTTTG
FRse1 For GAGATGGCGCAACGCAATTA 4,597 55.0
17HSD12Arm3GR2 Rev GCTGGAAAGGCTTTTGTGTC

Genotyping PCR
Hsd17b12 For TTAGGCTTTACTAGCATATAGC 206 (wt) 60.0

Rev TATAAGGAAACGGAAGCTCA 400 (loxP)
Rosa26Cre For GCACGTTCACCGCATCAAC 320 60.0

Rev CGATGCAACGAGTGATGAGGTTC
Adipoq-Cre For ATACCGGAGATCATGCAAGC 200 58.0

Rev GGCCAGGCTGTTCTTCTTAG
qRT-PCR

Acaca For GCCTCTTCCTGACAAACGAG 239 60.0
Rev TGACTGCCGAAACATCTCTG

Acox1 For TTATGCGCAGACAGAGATGG 209 61.7
Rev AGGCATGTAACCCGTAGCAC

Agrp For CTTTGGCGGAGGTGCTAGAT 75 59.0
Rev AGGACTCGTGCAGCCTTACAC

Cd36 For GATGACGTGGCAAAGAACAG 107 59.6
Rev TCCTCGGGGTCCTGAGTTAT

Cpt1a For CCAGGCTACAGTGGGACATT 209 57.0
Rev GAACTTGCCCATGTCCTTGT

Crh For ACTCAGAGCCCAAGTACGTT 164 60.9
Rev GCTCTCTTCTCCTCCCTTGG

Dgat1 For GCCACAATCATCTGCTTCCC 190 60.0
Rev CCACTGACCTTCTTCCCTGT

Dgat2 For CCAAGAAAGGTGGCAGGA 174 60.0
Rev TGAAGTTACAGAAGGCACCC

Fasn For TGGGTTCTAGCCAGCAGAGT 158 59.0
Rev ACCACCAGAGACCGTTATGC

Fatp2 For ATGCCGTGTCCGTCTTTTAC 168 59.6
Rev GACCTGTGGTTCCCGAAGTA

G6pc For CTGTTTGGACAACGCCCGTAT 91 61.8
Rev AGGTGACAGGGAACTGCTTTA

L19 For GGACAGAGTCTTGATGATCTC 195 60.0
Rev CTGAAGGTCAAAGGGAATGTG

Npy For CCGCTCTGCGACACTACAT 68 60.9
Rev TGTCTCAGGGCTGGATCTCT

Pepck For CTGAAGGTGTCCCCCTTGTC 110 59.6
Rev GATCTTGCCCTTGTGTTCTGC

Pklr For TGGCATCGAAAGTGGAAAGC 193 60.9
Rev GATGTGGGACTATGGGAGGG

Pomc For CAAGCCGGTGGGCAAGAAACG 119 60.9
Rev CTAATGGCCGCTCGCCTTCCAG

Ppara For ATGCCAGTACTGCCGTTTTC 220 61.8
Rev GGCCTTGACCTTGTTCATGT

Ppia For CATCCTAAAGCATACAGGTCCTG 165 60.0
Rev TCCATGGCTTCCACAATGTT

Scd1 For CATTCTCATGGTCCTGCTGC 163 59.6
Rev TGCCTTGTAAGTTCTGTGGC

Here, bp, base pairs; For, forward; qRT-PCR, quantitative RT-PCR; Rev, reverse; T, temperature; wt, wild type. Acaca, acetyl-CoA carboxylase-�; Acox1,
acyl-CoA oxidase 1; Agrp, agouti-related peptide; Cd36, cluster of differentiation 36; Cpt1a, carnitine palmitoyl transferase 1; Crh, corticotropin-releasing
hormone; Dgat1 and Dgat2, diacylglycerol O-acyltransferase 1 and 2, respectively; Fasn, fatty acid synthase; Fatp2, fatty acid transport protein 2; G6pc,
glucose-6-phosphatase L19, ribosomal protein L19; Npy, neuropeptide Y; Pepck, phosphoenolpyruvate carboxykinase; Pklr, pyruvate kinase L/R, Pomc,
proopiomelanocortin; Ppara, peroxisome proliferator-activated receptor-�; Ppia, peptidylprolyl isomerase A; Scd1, acyl-CoA desaturase 1.
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generation to test the germ line transmission. The mouse colony was
maintained by using the heterozygous littermates in breeding. A
schematic representation of the targeted, floxed, and deleted allele is
shown in Supplemental Fig. S1A (all Supplemental Material is available
at https://doi.org/10.6084/m9.figshare.12465512). The presence of the wt
and/or mutated Hsd17b12 gene in mice was analyzed by PCR (Table 1
and Supplemental Fig. S1B). The mice with the floxed allele were crossed
with the Rosa26CreERT strain (67) to generate a tamoxifen (Tam)-
inducible conditional KO mouse strain (HSD17B12cKO; Supplemental
Fig. S1C). The primer pair used to identify the presence of
Rosa26Cre-ERT alleles is listed in Table 1. The adipocyte-specific,
tamoxifen-inducible conditional KO mouse strain (aHSD17B12cKO;
Supplemental Fig. S1D) was generated by breeding the HSD17B12-
loxP mice with AdipoqCreERT2 mice (51). The primers used for
genotyping the presence of the Cre-ERT2 gene in these mice are
shown in Table 1.

Gene deletions in both KO models were induced by daily intra-
peritoneal injections of 1.5 mg tamoxifen (Sigma-Aldrich, St. Louis,
MO) for 5 consecutive days. Tamoxifen was dissolved in ethanol and
then diluted 1:10 in rapeseed oil. Ethanol diluted in rapeseed oil was
used as a vehicle.

All animal handling was conducted under animal license no.
10605/04.10.07/2016, granted by the Animal Experiment Board in
Finland, and was performed in accordance with the institutional
animal care policies, which fully meet the requirements defined in the
National Institutes of Health (Bethesda, MD) guidelines on animal
experimentation. Animals were housed at the Central Animal Labo-
ratory at the University of Turku, Turku, Finland, in individually
ventilated cages (IVCs; Techniplast, Buguggiate, Italy) with ~70 air
changes per hour and with constant temperature at 21 	 3°C and
humidity at 55 	 15% [means 	 standard deviation (SD)]. A 12:12-h
light-dark cycle was applied, with a light change at 7 AM and 7 PM.
Autoclaved aspen chips were used as bedding (Tapvei Ltd., Harjumaa,
Estonia), and soy-free pellets (RM3; Special Diets Services, Essex,
UK) and water were available ad libitum. Every cage had a nest box,
and tissue paper was provided for nest building. The animals were
individually identified with ear marks and housed with littermates
(1–6 mice per cage). Animals were euthanized with CO2 asphyxiation
and cervical dislocation.

Analyzing the Body Weight, Body Composition, and Weight of the
Adipose Tissue Depots

HSD17B12cKO. The body weight of the HSD17B12cKO mice was
monitored for 7 days by weighing the mice once a day, starting at the
time of the last Tam injection (day 0). Body composition (lean mass,
fat mass, and free water) was measured using an EchoMRI-700 device
(Echo Medical Systems, Houston, TX) in live mice on day 6 after the
last Tam injection. At the time of necropsy (6 days after the last Tam
injection) the weight of the various white adipose tissue (WAT)
depots (subcutaneous, gonadal, and perirenal), brown adipose tissue
(BAT), and various organs (liver, spleen, kidneys, adrenals, pancreas,
pituitaries, and heart) was measured, and tissues were collected in
liquid nitrogen and formalin.

aHSD17B12cKO. The body weight and composition of the
aHSD17B12cKO mice were monitored for 3 mo by weighing the
mice and performing the EchoMRI analyses once a month. The mice
were euthanized at the age of 5 mo, and interscapular BAT, subcu-
taneous, gonadal, and perirenal adipose tissue, and liver were col-
lected in liquid nitrogen and formalin.

Histological Analysis

For hematoxylin-eosin (H&E) or periodic acid-Schiff (PAS) stain-
ing, tissues collected at the time of necropsy were dissected and fixed
in 10% buffered formalin at room temperature for 24–48 h, dehy-
drated with increasing ethanol concentrations and xylene, and embed-
ded in paraffin. After deparaffinization and rehydration, 4-�m-thick

sections were stained with H&E or PAS for microscopic analysis. For
Oil Red O (ORO) staining, the tissue samples were embedded in
Tissue-Tek O.C.T. (Sakura Finetek USA, Inc., Torrance, CA) and
frozen in 2-methylbutane cooled with dry ice. Then 8-�m-thick
sections were cut and stained with ORO (Sigma-Aldrich). Microscope
slides were scanned using a Pannoramic 250 Flash digital slide
scanner (3DHISTECH Ltd., Budapest, Hungary).

Quantification of Apoptotic Cells in the Liver

Four-micrometer-thick paraffin sections of the liver from
HSD17B12cKO and control (CTRL) mice (males, CTRL n � 7 mice
and KO n � 7 mice; females, CTRL n � 6 mice and KO n � 8 mice)
were deparaffinized and rehydrated. Antigen retrieval was performed
in a microwave in citrate buffer (pH 6.0). Endogenous peroxidase
activity was inhibited by 3% H2O2. The sections were then incubated
in the terminal deoxynucleotidyl transferase (TdT) dUTP nick end
labeling (TUNEL) reaction mixture containing TdT and biotin-16-
dUTP (Roche Diagnostics GmbH) at 37°C for 1 h. The reaction was
terminated by adding 300 mM NaCl over the sections. The sections
were then blocked with 3% bovine serum albumin (BSA) and incu-
bated in ExtrAvidine (Sigma-Aldrich, diluted 1:500 in 1% BSA) for
30 min at 37°C, followed by staining with 3,3=-diaminobenzidine
(Dako Liquid DAB� Substrate Choromogen System; Dako North
America, Carpinteria, CA). Finally, the sections were counterstained
with Mayer’s hematoxylin, dehydrated, and mounted.

Slides were scanned using a Pannoramic 250 Flash digital slide
scanner (3DHISTECH Ltd., Budapest, Hungary). Digital slide images
were then imported into QuPath, version 0.2.0, an open-source soft-
ware platform (2). Apoptotic cells were identified using the positive
cell detection feature of QuPath, which detects the nuclei and classi-
fies them as positive (apoptotic cells) or negative with QuPath’s
built-in cell segmentation algorithms. The analysis was performed on
one sagittal section of the left lateral lobe per animal (mean area 52.2
mm2). A total of three outliers were excluded by the ROUT method
in GraphPad Prism (GraphPad Software, La Jolla, CA) with coeffi-
cient Q � 1% from male CTRL, male KO, and female CTRL groups,
one from each group. The mean percentage of positive nuclei of all
detected nuclei was compared between the control and KO groups.

Adipocyte Size

PAS-stained adipose tissue slides were scanned for further
analysis with a Pannoramic 250 Flash series digital slide scanner
(3DHISTECH Ltd.). Three to four 
10 images were taken with
3DHISTECH CaseViewer version 2.3. AdipoCount software (74) was
used to measure the average adipocyte size in the images for each
animal.

Triglyceride Measurement

Frozen liver samples were homogenized in PBS containing 0.1%
Nonidet P-40 (Roche Diagnostics GmbH) with TissueLyser LT (Qia-
gen, Hilden, Germany) using 5-mm stainless steel beads at 50 Hz for
2 min. After homogenization, the samples were incubated on ice for
30 min and spun down for 2 min at 12,000 relative centrifugal force
(RCF). Triglyceride concentration was measured in the supernatants
with Serum Triglyceride Determination Kit (Sigma-Aldrich) accord-
ing to the manufacturer’s instructions, scaled down for 96-well plates.
The absorbance was measured with an EnSight multimode plate
reader (PerkinElmer, Waltham, MA).

Analyzing the mRNA Expression

RNA was extracted from frozen tissues with TRIsure (Bioline,
London, UK) and treated with Amplification Grade DNase I (Sigma-
Aldrich). One microgram of RNA was then reverse transcribed using
SensiFAST cDNA Synthesis Kit (Bioline), and mRNA levels were
analyzed by quantitative RT-PCR using Dynamo Flash SYBR Green
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qPCR Kit (Thermo Fisher Scientific, Waltham, MA) and the CFX96
Real-Time C1000 Thermal Cycler (Bio-Rad, Hercules, CA). Stan-
dards were run in duplicate, and all RNA samples for the genes of
interest as well as reference genes [ribosomal protein L19 (L19)
and peptidylprolyl isomerase A (Ppia)] used for normalization
were analyzed in triplicate. Sequences of the primers used are
listed in Table 1.

Clinical Chemistry Analyses of the Blood

Various clinical chemistry parameters were analyzed in seven
control (Cre� lox/lox) and six HSD17B12cKO (Cre� lox/lox) male
mice as well as in five control (Cre� lox/lox) and five (Cre� lox/lox)
female mice on day 6 after Tam induction. Approximately 110 �L of
whole blood were collected from the saphenous vein in BD Micro-
tainer lithium-heparin blood collection tubes (Becton, Dickinson and
Company, Franklin Lakes, NJ) and analyzed for albumin, alkaline
phosphatase, alanine aminotransferase (ALT), amylase, blood urea
nitrogen, total calcium, creatinine, globulin, glucose, potassium, so-
dium, phosphate, total bilirubin, and total protein concentrations using
a Comprehensive Diagnostic Profile rotor (Abaxis, Inc., Union City,
CA) and Vetscan VS2 analyzer (Abaxis, Inc.).

Lipidomics Analysis in the Serum

For lipidomic studies, blood was collected from five control (Cre�,
lox/lox) and five HSD17B12cKO (Cre�, lox/lox) males, 6 days
post-Tam induction via heart puncture, allowed to coagulate overnight
at �4°C, and spun down to extract serum. Thereafter, quantitative
lipidomic analysis was performed as described earlier (23). Shortly,
lipids were extracted with liquid-liquid extraction using ethyl acetate
and methanol. To a 100-�L serum sample, 1 mL methanol, 1 mL
water, and 100 �L of labeled internal lipid standards were added, and
lipids were extracted by adding 3.5 mL of ethyl acetate. Dried samples
were reconstituted with 250 �L of mobile phase (dichloromethane-
methanol; 50:50, containing 10 mM ammonium acetate) for injection.
Lipid separation and quantitation was performed on the SCIEX
Lipidyzer platform using a SCIEX 5500 QTRAP mass spectrometer
(SCIEX, Framingham, MA) with SelexION differential ion mobility
(DMS) technology. The lipid molecular species were measured using
the multiple reaction monitoring (MRM) strategy in both positive and
negative polarities. Positive ion mode was used for the detection of
lipid classes dihydroceramides (DCERs), hexosylceramides (HCERs),
lactosylceramides (LCERs), sphingomyelins (SMs), diacylglycerols
(DAGs), cholesteryl esters (CEs), ceramides (CERs), and triacylglyc-
erols (TAGs), and negative ion mode was used for the detection of lipid
classes lysophosphatidylethanolamines (LPEs), lysophosphatidylcholines
(LPCs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs),
and free fatty acids (FFAs). Lipidomics Workflow Manager software
(SCIEX) was used for acquisition of samples, automated data processing,
signal detection, and lipid species concentration calculations. Data anal-
ysis was performed with MetaboAnalyst 4.0 (11). A total of 856 lipids
were analyzed, of which 222 lipids contained missing values. Of these,
137 lipids were found to have missing values in at least 40% of samples
(2 samples) in both KO and control mice and were, therefore, discarded
before the statistical analysis. Missing values from the remaining 85
lipids were input using the MissForest package (60). Values were log
transformed, and no outliers were observed.

Measuring Serum Cytokines

Blood was collected via heart puncture from 10 control (Cre�,
lox/lox) and 10 HSD17B12cKO (Cre�, lox/lox) males as well as 9
control (Cre�, lox/lox) and 10 HSD17B12cKO (Cre�, lox/lox)
females on day 6 post-Tam induction. To separate serum, blood was
allowed to coagulate overnight at �4ºC and spun down. Cytokine
levels were measured using Luminex 200 with xPONENT 3.1. soft-
ware (Luminex, Austin, TX) and MILLIPLEX MAP Mouse Cyto-

kine/Chemokine Magnetic Bead Panel (MCYTOMAG-70K-PMX;
Merck Millipore, Billerica, MA) according to the manufacturer’s
protocol. The cytokines measured included granulocyte colony-stimulat-
ing factor (G-CSF), granulocyte-macrophage colony-stimulating factor
(GM-CSF), interferon-� (IFN-�), interleukin-1� (IL-1�), IL-1B, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13,
IL-15, IL-17, interferon-�-induced protein 10 (IP-10), keratinocyte che-
moattractant (KC), monocyte chemoattractant protein 1 (MCP-1), mac-
rophage inflammatory protein 1-� (MIP-1�), MIP-1�, MIP-2, regulated
on activation, normal T cell expressed and secreted (RANTES), and
tumor necrosis factor-� (TNF-�). The minimum detectable concentra-
tions were 3.2 pg/mL for all the cytokines except 12.8 pg/mL for IL-13.

Indirect Calorimetry

Six control (Cre� lox/lox) and six HSD17B12cKO (Cre� lox/lox)
males were placed (1 mouse per cage) in OxyletPro indirect calorimetry
cages (Panlab, S.L.U., Barcelona, Spain) 3 days after the first Tam
injection. The system analyzes changes in O2 and CO2 concentrations,
and its high-precision extensiometric weight transducer measures water
consumption. In addition, the sensor platform records spontaneous activ-
ity and rearing events to determine activity levels. The measurement (3
days) was conducted between days 3 and 5 post-Tam induction.

Measuring Food Consumption

Three control (Cre� lox/lox) and five HSD17B12cKO (Cre�
lox/lox) males were housed in individual cages. To determine the
amount of food consumed, food pellets were weighed before and after
the measurement period on the morning of day 0 (after the last Tam
injection) and then every 24 h until day 5 post-Tam induction.

2-[18F]Fluoro-2-deoxy-D-glucose Positron Emission Tomography
Studies

To standardize blood glucose level, mice were fasted for 3 h with
ad libitum access to water before 2-[18F]fluoro-2-deoxy-D-glucose
([18F]FDG) injection. The blood glucose concentrations were mea-
sured using a glucometer (Bayer Contour; Bayer, Leverkusen, Ger-
many) before and after [18F]FDG PET/computed tomography (CT)
imaging. For PET/CT imaging, the mice were anesthetized using
isoflurane (3–4% induction and 1–2% maintenance), and the tail vein
was cannulated. The mice were intravenously injected with 5.1 	 0.1
MBq of [18F]FDG and scanned using a small-animal PET/CT (Inveon
Multimodality; Siemens Medical Solutions, Knoxville, TN) for 60
min starting from the time of the injection. The PET data acquired in
a list mode were iteratively reconstructed with an ordered subset
expectation maximization three-dimensional (3-D) algorithm, fol-
lowed by maximum a posteriori reconstruction. Quantitative PET
image analysis was performed using Carimas 2.9 software (Turku
PET Centre). The regions of interest were defined in brain, heart,
kidney, liver, lung, muscle, and urinary bladder using CT as the
anatomical reference. The uptake of [18F]FDG was reported as a
standardized uptake value (SUV), which takes into account animal
weight and injected radioactivity dose. Immediately after PET/CT,
blood was collected via cardiac puncture under terminal isoflurane
anesthesia, and mice were euthanized by cervical dislocation; various
tissues were excised and weighed, and their total radioactivity was
measured using a gamma counter (Triathler 3 in.; Hidex Oy, Turku,
Finland). The results are expressed as SUV.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.1.2
software (GraphPad Software, La Jolla, CA). Outliers were identified
using the ROUT method in Prism with coefficient Q � 1%. The
Shapiro–Wilk test was used to test for normal distribution. The
statistical tests were chosen depending on the results of the Shapiro–
Wilk tests of data normality. If not otherwise indicated, unpaired t test
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or nonparametric Mann–Whitney test was used to determine the
statistical significance between two groups at a single time point, and
two-way ANOVA was used for multiple time points. For adipocyte
size and Hsd17b12 mRNA expression, the statistical significance was
analyzed by one-way ANOVA. The threshold for statistical signifi-
cance was set at P � 0.05. Results are expressed as means 	 SD,
unless otherwise indicated.

RESULTS

Inducing Hsd17b12 Gene Inactivation in Adulthood Results
in Dramatic Weight Loss

In the HSD17B12cKO mouse model, the exon 2 deletion
was initiated at the age of 8 wk by injecting 1.5 mg of Tam per
day for 5 consecutive days. This resulted in a marked decrease
in Hsd17b12 mRNA levels in the different tissues measured 6
days after Tam injection, whereas with vehicle injection no
effect on the mRNA expression was observed (Fig. 1A). This
confirmed the Tam dependency of the gene deletion. The
strongest reduction in the mRNA level was observed in
the liver with a drop of 94%, followed by the colon (85%), the
WAT (77%), and the BAT (76%). Also in the kidney (50%)
and spleen (56%) a significant reduction was observed. In the
different brain regions and adrenals the mRNA levels were not
reduced significantly 6 days after completing the Tam treat-
ment (Fig. 1A), despite the confirmed expression of tamoxifen-
inducible Cre recombinase. The reason for phenotyping the
mice only 6 days after the initiation of the gene deletion was
that both the male and female HSD17B12cKO mice were
dramatically losing body weight during these 6 days (Fig. 1B),
and at day 6 the weight was reduced 17% in males (KO day 0,
30.3 	 1.45 g; KO day 6, 25.1 	 3.17 g) and 24% in females
(KO day 0, 23.2 	 0.95 g; KO day 6, 18.1 	 1.59 g). No effect
on body weight during the study period was observed in the
Tam-treated controls lacking the Cre or expressing one wt
allele. The weight loss was especially severe from day 4 to
day 6. The physical appearance and behavior of the
HSD17B12cKO mice were normal until day 6, whereas at day
6 the mice sat hunched and showed other signs of general
indisposition, and thus, the study period could not be extended.
As analyzed by EchoMRI, the weight loss was accompanied
with drastically lower fat content in the HSD17B12cKO mice
compared with the Tam-treated controls in both females and
males (56% and 66% lower, respectively; Fig. 1C). The re-
duced fat mass was confirmed ex vivo by analyzing the weights
of the different adipose tissue depots (Supplemental Fig. S2).
The reduced amount of fat in the HSD17B12cKO mice was
also associated with reduced lipid droplet size in both the WAT
and BAT in HSD17B12cKO mice compared with controls
(Fig. 1D). The loss of fat tissue was accompanied by a
significant loss of the lean mass (23% in females and 25% in
males).

The Weight Loss in HSD17B12cKO Mice Is Caused by
Reduced Water and Food Intake, whereas the Hypothalamic
Regulation of Feeding Is Intact

To define the cause of the rapid loss of adipose tissue,
we first assessed the overall energy consumption of
HSD17B12cKO males. The data indicated that energy con-
sumption of the HSD17B12cKO mice did not differ from that
of the control mice when normalized to the lean mass (Sup-

plemental Fig. S3A). Therefore, the results indicate that the
weight loss was not primarily due to an increased metabolic
rate of the HSD17B12cKO mice. Neither was there a dif-
ference in the locomotor activity (Supplemental Fig. S3B) or
in the number of rearing events (Supplemental Fig. S3C)
between the HSD17B12cKO and the control mice. How-
ever, HSD17B12cKO males show a decreased respiratory
exchange ratio during day 4, indicating a switch from using
carbohydrates as the fuel source to burn fat (Supplemental Fig.
S3D). While measuring the water and food intake, we observed
that the HSD17B12cKO mice drastically reduced water con-
sumption during days 3–5 after Tam induction (Fig. 2A) and
the caloric intake was markedly reduced during days 2–5
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Fig. 2. Water and food consumption of conditional hydroxysteroid 17�
dehydrogenase 12 knockout (HSD17B12cKO) mice. A: cumulative water
consumption of males during days 3–5 postinduction. Two-way ANOVA. B:
cumulative food consumption of males during days 1–5 postinduction. Two-
way ANOVA. C: lipid content in feces of control (CTRL) and HSD17B12cKO
(KO) mice. [Male CTRL, tamoxifen (Tam), n � 3 mice; male KO, Tam, n �
4 mice; female CTRL, Tam, n � 7 mice; female KO, Tam, n � 7 mice.] The
CTRL and KO groups in both sexes were compared with each other using the
t test. D: relative mRNA expression levels of genes regulating hunger-
signaling [neuropeptide Y (Npy) and agouti-related peptide (Agrp)] as well as
satiety-signaling genes [proopiomelanocortin (Pomc) and corticotropin-releas-
ing hormone (Crh)] in CTRL and KO female mice on day 6 postinduction in
the hypothalamus. t Test. (CTRL, Cre� lox/lox, Tam, n � 8 mice; KO, Cre�
lox/lox, Tam, n � 7–8 mice.) *P � 0.05, **P � 0.01, ***P � 0.001.
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postinduction (Fig. 2B). The control males consumed 3.7–4.0
g of chow per day, whereas the HSD17B12cKO males con-
sumed only 0.4–1.4 g/day, resulting in significantly reduced
food consumption over the study period (P � 0.004), also
indicated by lower serum glucose levels in KO mice compared
with controls (Table 2). Increased levels of serum albumin and
total proteins in HSD17B12cKO mice compared with the
controls, measured on day 6 postinduction, indicated severe
dehydration of HSD17BcKO mice (Table 2). The lipid con-
tents in the feces of KO mice did not differ from those of the
control mice, suggesting that the weight loss was not due to fat
malabsorption in the KO mice (Fig. 2C). These data prompted
us to assess the expression levels of the genes mediating the
satiety and hunger signals in the hypothalamus. mRNAs for
major hunger-inducing signaling components, such as neuro-
peptide Y (Npy) and agouti-related peptide (Agrp), were up-
regulated, whereas for those regulating satiety, proopiomela-
nocortin (Pomc) was downregulated, and corticotropin releas-
ing hormone (Crh) was upregulated in the HSD17B12cKO
mice compared with the control mice (Fig. 2D). Using
[18F]FDG PET imaging, both in vivo and ex vivo results
(Supplemental Fig. S4) indicated a normal, or slightly in-
creased, glucose uptake in the brain of HSD17B12cKO mice
compared with the controls. These results suggest that the
hypothalamic regulation of feeding is responsive to the weight
loss condition and that the observed metabolic defect is not of
hypothalamic origin.

HSD17B12 Expression in the Adipocytes Is Not Essential for
Metabolic Homeostasis

We also investigated whether the significantly reduced
Hsd17b12 expression detected in the adipose tissue of the
HSD17B12cKO (Fig. 1A) initiates the observed metabolic distur-
bance. For this purpose, we generated an inducible adipocyte-
specific HSD17B12 KO mouse model (aHSD17B12cKO). The
gene deletion in the adipocytes was induced by a 5-day-long
Tam treatment at the age of 8 wk, followed by the analysis of
body weight and body composition of the mice. However,
within 6 days after Tam treatment no alteration in body weight
or fat content was observed. Neither did we observe a pheno-

type similar to that of the HSD17B12cKO mice at any of the
later time points, despite a marked decrease in Hsd17b12
mRNA expression in the adipocytes (Fig. 3A). Three months
after the Tam injection, the aHSD17B12cKO mice pre-
sented with a body fat mass and lean mass similar to those
of the control mice (Fig. 3, B–D). Furthermore, the lipid
droplets within adipocytes did not appear smaller in the
aHSD17B12cKO mice than in the control mice (Fig. 3E).
These results indicated that the loss of HSD17B12 activity in
the adipocytes in adult mice does not lead to the severe
metabolic alteration and starvation that was observed in the
HSD17B12cKO mice.

Inducing Hsd17b12 Gene Inactivation in Adulthood Results
in Altered Serum Lipid Profile, Liver Steatosis, and Signs of
General Toxicity

We next performed serum lipidomic analysis to obtain a more
detailed understanding of the consequences of the Hsd17b12
disruption on circulating lipids in HSD17B12cKO mice. As ex-
pected, and shown by the heat map (Fig. 4A), the majority of the
872 metabolites of 13 different lipid classes measured were at
markedly lower levels in the HSD17B12cKO mice, although
some lipid species accumulating in the KO mice were identified as
well. The genotypes completely segregated into separate clusters
according to the phenotype. The volcano plot (Fig. 4B) shows that
TAGs were the most severely decreased lipid class, but CERs,
LPEs, LPCs, PCs, SMs, and LCERs were also significantly
decreased in HSD17B12cKO serum compared with controls.
Interestingly, the HSD17B12cKO serum showed a 1.39-fold
higher concentration of DCERs [log2(1.39) � 0.48; Fig. 4B] com-
pared with controls, DCERs being the only lipid class found to
accumulate during the weight loss. As the total amount of cer-
amides was markedly reduced, the DCER-to-CER ratio (DCER/
CER) was increased by 2.6-fold (CTRL, DCER/CER � 0.16;
KO, DCER/CER � 0.42), with the highest increase in the con-
centration of DCER(FA16:0). In all groups of ceramides (CERs,
DCERs, LCERs, and HCERs), we also observed an increased
relative amount of fatty acids with chain length of 14 and 16
carbon atoms (FA14:0 and FA16:0) and a reduced amount of fatty
acids with longer chain lengths (FA18:0, FA20:0, FA22:0 and

Table 2. Clinical chemistry results from whole blood of HSD17B12cKO mice

Males Females

Parameter Control HSD17B12cKO FC P Value Control HSD17B12cKO FC P Value

n 7 6 5 5
Albumin, g/L 40.7 	 2.43 46.8 	 3.49 1.15 0.017† 46.2 	 1.30 50.8 	 3.06 1.10 0.013†
Alkaline phosphatase, U/L 134 	 25.1 186 	 37.5 1.39 0.024† 198 	 23.4 180 	 27.4 0.91 0.429
Alanine aminotransferase, U/L 27.3 	 5.96 126 	 120 4.63 0.190 22.0 	 2.73 170 	 66.6 7.71 0.004‡
Amylase, U/L 827 	 52.9 870 	 163 1.05 0.485 715 	 34.4 653 	 144 0.91 0.429
Total bilirubin, �mol/L 4.57 	 0.79 4.80 	 0.84 1.05 0.665 4.40 	 0.54 5.00 	 1.00 1.14 0.357
Blood urea nitrogen, mmol/L 7.66 	 0.69 14.1 	 14.3 1.84 0.394 6.84 	 1.08 15.2 	 13.9 2.23 0.011†
Total calcium, mmol/L 2.51 	 0.05 2.52 	 0.08 1.01 0.732 2.56 	 0.04 2.62 	 0.03 1.02 0.050†
Phosphate, mmol/L 2.95 	 0.45 2.03 	 0.46 0.69 0.026† 2.37 	 0.36 2.31 	 0.44 0.98 0.931
Creatinine, �mol/L 23.1 	 5.58 29.3 	 11.6 1.27 0.446 25.6 	 7.76 22.5 	 7.15 0.88 0.307
Glucose, mmol/L 8.71 	 1.55 5.33 	 3.24 0.61 0.071 8.12 	 1.36 5.13 	 2.00 0.63 0.017†
Sodium, mmol/L 148 	 1.89 149 	 2.40 1.01 0.316 148. 	 2.68 154 	 3.44 1.04 0.022†
Potassium, mmol/L 6.26 	 0.81 5.78 	 0.67 0.92 0.452 5.90 	 1.13 6.23 	 1.19 1.06 0.875
Total protein, g/L 58.1 	 2.54 65.7 	 5.72 1.13 0.039† 60.2 	 1.64 66.3 	 4.97 1.10 0.015†
Globulins, g/L 17.1 	 2.19 18.8 	 2.56 1.10 0.290 14.0 	 0.71 15.7 	 2.73 1.12 0.221

Values are means 	 SD; n � no. of mice. FC, fold change; HSD17B12cKO, conditional hydroxysteroid 17� dehydrogenase 12 knockout. †P � 0.05, ‡P �
0.001, significantly different results.
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22:1, and FA24:0 and 24:1; Fig. 4C). This strongly suggests a
defect in the fatty acid elongation in the HSD17B12cKO mice. To
our surprise, we did not observe any specific changes in the AA
levels as a free form or as a component of the various lipid classes.

Six days after the Tam injection we observed significant fat
accumulation in the livers of female HSD17B12cKO mice

(Fig. 5, A and C). Fat accumulation was observed in some
HSD17B12cKO male mice as well, but the difference in the
amount of triglycerides between the control males and
HSD17B12cKO males did not reach statistical significance.
The liver injury in HSD17B12cKO mice was further supported
by 8-fold-increased (P � 0.005) and 5-fold-increased serum
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HCERs of control (CTRL) and HSD17B12cKO (KO) males on day 6 postinduction. t Test. Gray lines represent median values. ND, not detected. (CTRL, Cre�
lox/lox, Tam, n � 5 mice; KO, Cre� lox/lox, Tam, n � 5 mice.) *P � 0.05, **P � 0.01.
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Fig. 5. Liver histology of conditional hydroxysteroid 17� dehydrogenase 12 knockout (HSD17B12cKO) of 10-wk-old male mice. Mice were euthanized on day
6 after the induction of Cre recombination. A: hematoxylin-eosin (H&E; top), Oil Red O (ORO; middle), and terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) staining (bottom) of control (CTRL) and HSD17B12cKO (KO) male and female mice show microvesicular steatosis and apoptosis in the
KO mice. The arrowheads indicate apoptotic cells, and arrows indicate lipid droplets. B–D: alanine aminotransferase (ALT) activity in serum (B), concentration
of hepatic triglycerides (C), and percentage of apoptotic cells in the liver (D) on day 6 after tamoxifen (Tam) induction of CTRL and KO mice. (Male CTRL,
Cre� lox/lox, Tam, n � 6–7 mice; male KO, Cre� lox/lox, Tam, n � 6 mice; female CTRL, Cre� lox/lox, Tam, n � 5–6 mice; female KO, Cre� lox/lox,
Tam, n � 6–8 mice.) Squares represent individual values, and horizontal lines represent median values. Red squares indicate the animal seen in the histological
images. t Test. Scale bars, 50 �m.
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ALT levels in HSD17B12cKO females and males, respec-
tively, compared with control mice (Fig. 5B). In females,
microvesicular steatosis was associated with a trend of increas-
ing percentage of apoptotic cells in the HSD17B12cKO livers,
indicating lipotoxic hepatocellular injury as well (Fig. 5D).

As the HSD17B12cKO mice showed signs of general tox-
icity and chronic pain with distress presented with piloerection,
social isolation, partially closed eyelids, unresponsiveness, and
snout grooming, we measured cytokines in serum to analyze
their general inflammatory status. The data revealed a marked
increase in IL-6, IL-17, and G-CSF levels in both male and
female KO mice compared with the controls (Table 3). In
addition, the data indicated a minor decrease in the levels of IP-10,
IL-1�, and IL-5 in males and of MIP-1�, IFN-�, and KC in
females. These results further confirmed that the HSD17B12cKO
mice suffered from systemic inflammation.

Energy Depletion Leads to Reduced Hepatic De Novo
Lipogenesis and Increased Gluconeogenesis in
HSD17B12cKO Mice

The analysis of mRNA expression in liver samples of male
mice 6 days after Tam induction did not indicate an enhanced
FA uptake, as the mRNA expression for cluster of differenti-
ation 36 (Cd36) and fatty acid transport protein 2 (Fatp2) was
not altered (Supplemental Fig. S5). Neither was there a differ-
ence in mRNA expression for the proteins centrally involved in
FA oxidation between the control and HSD17B12cKO mice.
Those measured included peroxisome proliferator-activated
receptor-� (Ppara), carnitine palmitoyl transferase 1 (Cpt1a),
and acyl-CoA oxidase 1 (Acox1). However, of the mRNAs
coding for the enzymes involved in FA esterification, diacyl-
glycerol O-acyltransferase 1 (Dgat1) presented with a trend of
higher expression in the HSD17B12cKO animals than in the
control animals, whereas the mRNA expression of key enzymes
involved in de novo lipogenesis, such as acetyl-CoA carboxy-
lase-� (Acaca), fatty acid synthase (Fasn), and acyl-CoA desatu-
rase 1 (Scd1), was decreased in the HSD17B12cKO mice com-
pared with the controls.

PAS staining of liver sections 6 days after Tam induction
showed reduced glycogen contents in the HSD17B12cKO
livers compared with control livers. As a compensatory
effect, mRNA expression for the enzyme presenting the
rate-limiting step in gluconeogenesis, namely, phosphoenol-

pyruvate carboxykinase (Pepck), was significantly increased
in the HSD17B12cKO mice, and mRNA expression for Pklr,
which encodes for a pyruvate kinase, was decreased in the KO
animals. These results show that the hepatic glycogen stores of
HSD17B12cKO mice were depleted 6 days after knockout
induction and that the lipids accumulating within the hepato-
cytes were not of hepatic origin.

DISCUSSION

In the present study, we generated an inducible conditional
HSD17B12 KO mouse by crossing the HSD17B12-loxP mice
with mice expressing tamoxifen-inducible Cre recombinase
under the ubiquitously expressed ROSA26 locus (22, 58, 73).
Our previous studies showed that HSD17B12 is essential for
mouse embryonic development (46). In the current study, we
showed that HSD17B12 activity is also essential for normal
metabolic homeostasis in adult mice. The disruption of the
HSD17B12 action led to a drastic loss of body weight within
6 days postinduction, evidenced by reduced fat and lean mass
as well as severe dehydration. The weight loss was not ob-
served in the adipocyte-specific HSD17B12cKO mouse model,
indicating that despite the high expression of Hsd17b12 in
murine fat, the loss of stored fat was not due to disrupted
HSD17B12 function in the adipose tissue.

During the first 5 days after tamoxifen induction the general
well-being of HSD17B12cKO mice appeared normal, apart
from weight loss. On day 6, we observed hunched posture,
closed eyelids, and reduced locomotor activity, which are all
signs of general illness and pain (8, 17, 18), and no studies
beyond day 6 postinduction were warranted. Similar signs are
often observed in mouse models of sepsis (56) and in patho-
gen-induced sickness (35), as well as during cytotoxic chemo-
therapy (19, 48). The HSD17B12cKO mice seemed to have a
trend of decreased locomotor activity already between days 3
and 5, but the difference observed was not significant. Further-
more, the HSD17B12cKO mice showed microsteatosis and
increased triglyceride accumulation in the liver together with
increased plasma ALT levels, which are all indicators of liver
injury [6, 37, 68; for review, see Senior (55)]. Female mice are
known to be more sensitive to toxicity compared with males
(30, 31, 59). This is in line with the higher serum ALT levels
in HSD17B12cKO females compared with the KO males.
There was also a trend for increased apoptosis in female livers,

Table 3. Cytokine concentrations measured in serum of HSD17B12cKO mice

Males Females

Cytokine Control HSD17B12cKO FC P Value Control HSD17B12cKO FC P Value

n 10 10 9 10
G-CSF 511 	 266 1,175 	 299 2.30 �0.001‡ 628 	 341 7,953 	 3,753 12.6 �0.001‡
IFN-� 5.32 	 2.02 4.38 	 1.59 �1.22 ns 6.10 	 2.86 3.86 	 2.36 �1.58 0.028*
IL-1� 417 	 104 279 	 87.9 �1.50 0.005† 228 	 74.2 199 	 114 �1.15 ns
IL-5 23.7 	 17.6 10.0 	 3.56 �2.37 0.009† 27.2 	 6.29 20.9 	 16.5 �1.30 ns
IL-6 7.43 	 7.90 59.6 	 48.9 8.02 �0.001‡ 5.35 	 1.37 189 	 125 35.3 �0.001‡
IL-17 20.44 	 9.74 117.5 	 96.2 5.75 0.005† 35.75 	 27.0 147.9 	 88.1 4.14 0.001†
IP-10 481 	 116 353 	 121 �1.36 0.026* 391 	 100 409 	 209 1.05 ns
KC 710 	 496 531 	 477 �1.34 ns 385 	 186 1,756 	 1,040 4.55 0.002†
MIP-1� 32.1 	 12.1 39.7 	 20.3 1.24 ns 32.1 	 8.87 20.9 	 5.84 �1.54 0.014*

Values are means 	 SD; n � no. of mice. Statistical significance was determined using the t test or nonparametric Mann–Whitney test depending on the
normality of the data. FC, fold change; G-CSF, granulocyte colony-stimulating factor; HSD17B12cKO, conditional hydroxysteroid 17� dehydrogenase 12
knockout; IP-10, IFN-�-induced protein 10; KC, keratinocyte chemoattractant; MIP-1�, macrophage inflammatory protein 1-�; ns, not significant. *P � 0.05,
†P � 0.01, ‡P � 0.001, significantly different results.
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but not in male livers. Thus, various indicative parameters for
general well-being indicate that the mice with disrupted
HSD17B12 enzyme suffer from general toxicity likely due to
accumulation of toxic intermediates originating from the dis-
rupted lipid metabolism.

The data indicated an increased level of proinflamma-
tory cytokines, such as IL-6, IL-17, and G-CSF, in the
HSD17B12cKO mice. IL-6 has been shown to induce cachexia
by increasing lipolysis in WAT (25, 70). Furthermore, elevated
serum IL-6 has been linked to weight loss in both patients with
cancer cachexia (54) and patients with anorexia nervosa (15,
16). Thus, increased IL-6 is one potential mechanism for the
weight loss observed in the HSD17B12cKO mice. The reduced
lean mass and reduced glucose uptake in muscles in the
HSD17B12cKO animals could be explained by elevated IL-6
as well, as high levels of IL-6 have been shown to induce
muscle atrophy in animal models of cachexia [for review, see
Dantzer and Kelley (18)]. It is still unclear how the lack of
HSD17B12 leads to an increase in the levels of proinflamma-
tory cytokines. However, our previous studies showed that
disruption of HSD17B12 in mice leads to lower levels of
prostanoids [PGD2, PGE2, PGF2a, and thromboxane B2

(TXB2)] in ovaries (33). Prostanoids are involved in the
regulation of cytokine production [for review, see Velasco et
al. (63)]; low levels of prostaglandin E2 have been shown to
increase IL-17 levels (49), and increased IL-17, in turn, is
capable of inducing both IL-6 and G-CSF (12, 71), conse-
quently promoting inflammation and sickness behavior.

HSD17B12 deficiency drastically reduced water and food
intake in 3 days. Thus, the weight loss observed in
HSD17B12cKO mice could be explained by the reduced food
and water intake. Similarly, a fast for 48 h is sufficient to
produce a weight loss of up to 20% of body weight in mice
(20). Moreover, we did not observe any changes in the whole
body energy expenditure in the KO mouse, suggesting that
their general metabolism is not activated over that of the
control mice. In a fasting state, the hypothalamic orexigenic
peptide expressions of Npy and Agrp are known to increase,
whereas anorexigenic Pomc mRNA expression is known to
decrease to increase food intake and replenish energy stores (9,
13, 24, 50, 52, 53), and accordingly, this was also observed in
HSD17B12cKO mice 6 days postinduction. This indicates that
the hypothalamic regulation of hunger and satiety was respond-
ing to starvation in the HSD17B12cKO mice. Surprisingly, the
Hsd17b12 gene was still expressed in the brain, indicating that
the 6-day-long time period following the Tam injection was not
sufficient to induce Cre-mediated recombination in the brain.
However, the anorexigenic Crh expression was increased in
the KO mice. Crh is also a major regulator of the stress
response (27), and administration of CRH is known to suppress
appetite and cause anorexia in mice (5, 21, 62). Thus, the
increased Crh expression in HSD17B12cKO mice in adulthood
is in line with the observed stress response in the mice and, in
addition to IL-6, could inhibit food intake.

In line with the heavily reduced adipose mass, serum lipid
concentrations were mostly reduced in the HSD17B12cKO
mice compared with controls. However, surprisingly, we ob-
served an increased concentration of dihydroceramides in our
KO model. Recent studies have found dihydroceramides to be
regulators of autophagy in cell culture models of hepatic
steatosis and cancer (28, 36). Furthermore, an increased ratio

of dihydroceramides to ceramides has been shown to mediate
apoptosis (28), and starvation is also known to induce au-
tophagy (44, 47, 72). Thus, the increased dihydroceramide
levels in HSD17B12cKO mice could contribute to the ob-
served liver steatosis and inflammation. The lipidomics data
also revealed a proportional increase in FA16-containing lipids
in the HSD17B12cKO mice with an equivalent decrease in
lipids including longer fatty acids (FA18, FA20, FA22, and
FA24). This was also observed in cholesteryl esters, and to
some extent in SMs (short ones accumulate, long ones did not
change), but this proportional increase in shorter fatty acids
was not observed in the FFA, LPC, LPE, PC, PE, or TAG
classes. Together, these data suggest that HSD17B12 is essen-
tial for the normal composition of sphingomyelins and their
precursors, i.e., ceramides and dihydroceramides.

Because of their heavily reduced food intake, the metabolic
state of HSD17B12cKO mice at least partially resembles that
of prolonged fasting. De novo lipogenesis appeared to be
decreased, whereas gluconeogenesis was increased in the
HSD17B12cKO mice, in line with previous studies on fasting
response (40, 57). Defects in FA oxidation are a common cause
behind fat accumulation in the hepatocytes in non-alcoholic
fatty liver disease (NAFLD) [for review, see Mansouri et al.
(38)]. However, this does not seem to be the mechanism for
liver steatosis in the HSD17B12cKO mice. Of the other en-
zymes studied, DGAT1 preferably esterifies FAs imported to
the cell, whereas DGAT2 utilizes FAs originating from de
novo lipogenesis. Thus, the observed trend of induced Dgat1
expression in the liver without a change in the Dgat2 expres-
sion supports the idea of increased fat mobilization from
adipose tissue in the HSD17B12cKO mice (45, 65, 69).

In conclusion, our KO mouse data show that HSD17B12
is essential for metabolic homeostasis in adult mice and
Hsd17b12 gene disruption leads to severe weight loss and liver
steatosis. Mice with disrupted HSD17B12 enzyme suffer from
general toxicity, possibly due to accumulation of toxic inter-
mediates originating from the disrupted lipid metabolism or an
imbalance in the production of prostaglandins and cytokines,
leading to cytokine-induced sickness behavior. We suggest that
the drastic loss of adipose tissue is largely due to an anorexia
phenotype, potentially induced by the accumulation of toxic
lipids. Further studies are needed to investigate the detailed
mechanisms behind the severe inflammation and disrupted
lipid homeostasis.
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