159 research outputs found

    Power-law bounds on transfer matrices and quantum dynamics in one dimension II

    Get PDF
    We establish quantum dynamical lower bounds for a number of discrete one-dimensional Schr\"odinger operators. These dynamical bounds are derived from power-law upper bounds on the norms of transfer matrices. We develop further the approach from part I and study many examples. Particular focus is put on models with finitely or at most countably many exceptional energies for which one can prove power-law bounds on transfer matrices. The models discussed in this paper include substitution models, Sturmian models, a hierarchical model, the prime model, and a class of moderately sparse potentials.Comment: 20 page

    Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    Get PDF
    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parameterize the cosmic expansion by the two parameters, w0w_0 and waw_a, and the linear growth rate of density fluctuations by Linder's γ\gamma, independently. Dark energy models generically predict γ≈0.55\gamma \approx 0.55, while the DGP model γ≈0.68\gamma \approx 0.68. To determine if future imaging surveys can constrain γ\gamma within 20 percent (or Δγ<0.1\Delta\gamma<0.1), we perform the Fisher matrix analysis for a weak lensing survey such as the on-going Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the Figure of Merit (FoM) as a function of the exposure time \texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around \texp\simeq {\rm several}\sim 10 minutes; a shallow and wide survey is preferred to constrain the γ\gamma parameter. While Δγ<0.1\Delta\gamma < 0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like WFMOS and/or future CMB observations.Comment: 18 pages, typos correcte

    Predicting the Clustering of X-Ray Selected Galaxy Clusters in Flux-Limited Surveys

    Get PDF
    (abridged) We present a model to predict the clustering properties of X-ray clusters in flux-limited surveys. Our technique correctly accounts for past light-cone effects on the observed clustering and follows the non-linear evolution in redshift of the underlying DM correlation function and cluster bias factor. The conversion of the limiting flux of a survey into the corresponding minimum mass of the hosting DM haloes is obtained by using theoretical and empirical relations between mass, temperature and X-ray luminosity of clusters. Finally, our model is calibrated to reproduce the observed cluster counts adopting a temperature-luminosity relation moderately evolving with redshift. We apply our technique to three existing catalogues: BCS, XBACs and REFLEX samples. Moreover, we consider an example of possible future space missions with fainter limiting flux. In general, we find that the amplitude of the spatial correlation function is a decreasing function of the limiting flux and that the EdS models always give smaller correlation amplitudes than open or flat models with low matter density parameter. In the case of XBACs, the comparison with previous estimates of the observational spatial correlation shows that only the predictions of models with Omega_0m=0.3 are in good agreement with the data, while the EdS models have too low a correlation strength. Finally, we use our technique to discuss the best strategy for future surveys. Our results show that the choice of a wide area catalogue, even with a brighter limiting flux, is preferable to a deeper, but with smaller area, survey.Comment: 20 pages, Latex using MN style, 11 figures enclosed. Version accepted for publication in MNRA

    Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)

    Full text link
    The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400, 380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in survey astronomy. Here we summarize the science case feasible for a survey of Subaru 300 nights. We describe plans to constrain the nature of dark energy via a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3 in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological distances will be measured to 3% precision via BAO, and redshift-space distortions will be used to constrain structure growth to 6% precision. In the GA program, radial velocities and chemical abundances of stars in the Milky Way and M31 will be used to infer the past assembly histories of spiral galaxies and the structure of their dark matter halos. Data will be secured for 10^6 stars in the Galactic thick-disk, halo and tidal streams as faint as V~22, including stars with V < 20 to complement the goals of the Gaia mission. A medium-resolution mode with R = 5000 to be implemented in the red arm will allow the measurement of multiple alpha-element abundances and more precise velocities for Galactic stars, elucidating the detailed chemo-dynamical structure and evolution of each of the main stellar components of the Milky Way Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our simulations suggest the wide avelength range will be powerful in probing the galaxy population and its clustering over a wide redshift range. We propose to conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision based on studies for the Preliminary Design Review (PRD) held in Feb 2013. The higher-resolution paper file is available from http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd

    Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System

    Get PDF
    We determine the stellar, planetary, and orbital properties of the transiting planetary system HD 209458 through a joint analysis of high-precision radial velocities, photometry, and timing of the secondary eclipse. Of primary interest is the strong detection of the Rossiter-McLaughlin effect, the alteration of photospheric line profiles that occurs because the planet occults part of the rotating surface of the star. We develop a new technique for modeling this effect and use it to determine the inclination of the planetary orbit relative to the apparent stellar equator (λ = -4Âș.4 ± 1Âș.4), and the line-of-sight rotation speed of the star (v sin /_★ = 4.70 ± 0.16 km s^(-1)). The uncertainty in these quantities has been reduced by an order of magnitude relative to the pioneering measurements by Queloz and collaborators. The small but nonzero misalignment is probably a relic of the planet formation epoch, because the expected timescale for tidal coplanarization is larger than the age of the star. Our determination of v sin /★ is a rare case in which rotational line broadening has been isolated from other broadening mechanisms

    Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of the large scale structure gas distribution will be probed with current and upcoming wide-field small angular scale cosmic microwave background experiments. We study the generation of pressure fluctuations by baryons which are present in virialized dark matter halos and by baryons present in small overdensities. For collapsed halos, assuming the gas distribution is in hydrostatic equilibrium with matter density distribution, we predict the pressure power spectrum and bispectrum associated with the large scale structure gas distribution by extending the dark matter halo approach which describes the density field in terms of correlations between and within halos. The projected pressure power spectrum allows a determination of the resulting SZ power spectrum due to virialized structures. The unshocked photoionized baryons present in smaller overdensities trace the Jeans-scale smoothed dark matter distribution. They provide a lower limit to the SZ effect due to large scale structure in the absence of massive collapsed halos. We extend our calculations to discuss higher order statistics, such as bispectrum and skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a probe of correlations between dark matter and baryon density fields, while the probability distribution functions of peak statistics of SZ halos in wide field CMB data can be used as a probe of cosmology and non-Gaussian evolution of large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D. (in press

    Cosmological constraints from clustering properties of galaxy clusters

    Full text link
    In this paper, we discuss improvements of the Suto et al. (2000) model, in the light of recent theoretical developments (new theoretical mass functions, a more accurate mass-temperature relation and an improved bias model) to predict the clustering properties of galaxy clusters and to obtain constraints on cosmological parameters. We re-derive the two-point correlation function of clusters of galaxies for OCDM and LambdaCDM cosmological models, and we compare these results with the observed spatial correlation function for clusters in RASS1 (ROSAT All-Sky Survey 1), and in XBACs (X-RAY Brighest Abell-Type) samples. The comparison shows that the best agreement is obtained for the LambdaCDM model with Omega=0.3. The values of the correlation length obtained, (r_\simeq 28.2 \pm 5.2 \rm h^{-1}} Mpc for LambdaCDM), are larger than those found in the literature and comparable with the results found in Borgani, Plionis & Kolokotronis (1999). (REST IN THE PAPER ABSTRACT)Comment: printed in A&

    Observations and Theoretical Implications of the Large Separation Lensed Quasar SDSS J1004+4112

    Full text link
    We study the recently discovered gravitational lens SDSS J1004+4112, the first quasar lensed by a cluster of galaxies. It consists of four images with a maximum separation of 14.62''. The system has been confirmed as a lensed quasar at z=1.734 on the basis of deep imaging and spectroscopic follow-up observations. We present color-magnitude relations for galaxies near the lens plus spectroscopy of three central cluster members, which unambiguously confirm that a cluster at z=0.68 is responsible for the large image separation. We find a wide range of lens models consistent with the data, but they suggest four general conclusions: (1) the brightest cluster galaxy and the center of the cluster potential well appear to be offset by several kpc; (2) the cluster mass distribution must be elongated in the North--South direction, which is consistent with the observed distribution of cluster galaxies; (3) the inference of a large tidal shear (~0.2) suggests significant substructure in the cluster; and (4) enormous uncertainty in the predicted time delays between the images means that measuring the delays would greatly improve constraints on the models. We also compute the probability of such large separation lensing in the SDSS quasar sample, on the basis of the CDM model. The lack of large separation lenses in previous surveys and the discovery of one in SDSS together imply a mass fluctuation normalization \sigma_8=1.0^{+0.4}_{-0.2} (95% CL), if cluster dark matter halos have an inner slope -1.5. Shallower profiles would require higher values of \sigma_8. Although the statistical conclusion might be somewhat dependent on the degree of the complexity of the lens potential, the discovery is consistent with the predictions of the abundance of cluster-scale halos in the CDM scenario. (Abridged)Comment: 21 pages, 24 figures, 5 tables, accepted for publication in Ap
    • 

    corecore