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Abstract

We establish quantum dynamical lower bounds for a number of discrete one-dimensional
Schrédinger operators. These dynamical bounds are derived from power-law upper bounds on
the norms of transfer matrices. We develop further the approach from part | and study many
examples. Particular focus is put on models with finitely or at most countably many exceptional
energies for which one can prove power-law bounds on transfer matrices. The models discussed
in this paper include substitution models, Sturmian models, a hierarchical model, the prime
model, and a class of moderately sparse potentials.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a discrete one-dimensional Schrddinger operator

[Hyy](n) = y(n =D +y(n+1) + V)Y (n) @
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in ¢2(Z) or £2(N) (with a Dirichlet boundary condition). We are interested in proving
lower bounds on the spreading of an initially localized wavepacket under the dynamics
governed byHy. That is, if we consider the initial stat¢, we ask how fasi)(r) =
exp(—it Hy)y spreads out. One is normally interested in initial states that are well
localized. In the present paper, we shall limit our attention to the gased;.

A typical quantity that is considered to measure the spreading©fis the following:
Define

(IXI[)N(T) = Z|n|f'a(n 7), @)
where
1 +oo —2t/T 2
“(”’T)Z?/o 2T (5, ()2 dt. &)

Clearly, the faster(|X|f/’,>(T) grows, the fastewy(r) spreads out, at least averaged in

time. One typically wants to prove power-law lower bounds(Uﬁli)(T) and hence it
is natural to define the following quantity: Fpr> 0, define the lower growth exponent
B, (p) by

i log (| X1)(T)
By (p) = 'mian'

There are presently two distinct approaches to proving lower bound&@fgv). The
first goes back to works of Guarndfi3], Combed3], and Las{{24] and is based on a
study of the Hausdorff dimension of the spectral meagyyeassociated with the pair
(H,Y¥). Namely, we have the following bound:

By (p) = p - dimgy (). 4)

The Jitomirskaya—Last extensidth5,16] of Gilbert—Pearson theorjl2] allows for a
convenient way of investigating dig,) and hence this approach has enjoyed some
popularity (see, e.g[5,20,35]for applications).

On the other hand, this bound clearly gives nothing in the case of a zero-dimensional
spectral measure, for example, in the case of a pure point measure, there are a number
of models where one expects (or can prove) pure point spectrum with strictly positive
values fOI’ﬂJ(p). An example is given by the random dimer model; studied, for
example, in[2,11,17] It is therefore desirable to have a way of proving lower bounds
on the transport exponents which works for such models and, of course, whose input is
easy to verify in concrete cases. Such an approach was develof#d(@nd employed
in [17] to prove the conjectured dynamical lower bound for the random dimer model),
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and the present article is a continuation of that paper. The necessary input are power-
law upper bounds on transfer matrices for certain energies. It may come as a surprise
that dynamical bounds can be obtained if there is only one energy where one can
exhibit a power-law bound for the transfer matrix. This is indeed necessary for models
such as the random dimer model and related di@gswhere there are only a finite
number of such energies.

Another advantage of the approach fr§@h over bound 4) is the stability of its input
with respect to perturbations of the potentiallt was noted in[8] that if its approach
can be applied to a given model, then it can also be applied to all finitely supported
perturbations of the given potential—and it gives the same dynamical bounds for the
perturbed models. Such a stability is not true, in general, for bounds derived d%ing (
For example, it may happen that the addition of a finitely supported perturbation turns
a given singular continuous spectral measure into a pure point measurgt0$der
many examples illustrating this phenomenon.

In [8], the general criterion was applied to three prominent models from one-
dimensional quasicrystal theory, namely, the Fibonacci model, the period doubling
model, and the Thue—Morse model. All these models can be generated by a substitution
process. This allows one to study the growth of transfer matrix norms with the help
of an associated dynamical system—the trace map—and this provides, in particular, a
very convenient way of verifying the input to the general dynamical criterion.

In the present paper, we will prove a more general version of the dynamical result
from [8], involving also the weight assigned by the spectral measure to the set of en-
ergies with power-law bounded transfer matrices. This gives stronger dynamical results
in cases where such bounds hold for all energies in the spectrum, for example, models
with Sturmian potentials. We shall also prove a stronger stability result. Namely, we
will show that, for a fixed energy, the power-law bound is stable with respect to power-
decaying perturbations. Here, the power-decay of the perturbation that we can allow
depends on the transfer matrix power-law bound we start out with. Finally, we shall
study a large number of examples and derive dynamical results for them by applying
our main theorem, Theorerh below. The examples discussed in this paper include, in
particular, generalizations of each of the three prominent substitution models studied
in [8].

The organization of the paper is as follows. In Sect®rve prove our main theorem
which derives quantum dynamical lower bounds from power-law bounds on transfer
matrices. SectioB discusses the stability of such power-law bounds on transfer matrices
with respect to power-decaying perturbations of the potential. Sedtideals with a
class of models that are “sparse” in a certain sense and which includes a variety of
substitution models (in particular, generalizations of Fibonacci, period doubling, and
Thue—Morse), the prime Schrédinger operator, and moderately sparse models which
were studied by Zlato$35]. The hierarchical model, which was studied in detail by
Kunz et al.[23] from a spectral point of view, will then be considered in Section
Finally, we present results for Sturmian models (studied, e.g1,B14} see also the
reviews[4,33]) in Section6.
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2. A quantum dynamical lower bound derived from power-law transfer matrix
bounds

In this section, we prove a more general version of the main result {BmThe
general idea of proof is the same and the result derives lower bounds on the dynam-
ical quantityﬂgl(p) from power-law bounds on transfer matrices. However, the result
established in this section gives improved bounds in many cases, in particular, in the
case of Sturmian potentials discussed later in the paper.

Recall the notion of a transfer matrix. Consider for sofies R, a solution¢ of
the difference equation

dn+1D+ -1+ V)pn) = Edn). ®)

Denote d(n) = (¢p(n + 1), p(n))". The transfer matrixr’ (n, m; E) is defined by re-
quiring

&(n) =T(n,m; E)DO(m)
for every solutiong of (5). It is straightforward to verify that fon > m
Tn,m,Ey=T(V(n); E) x ---xT(V(im+1); E),

where

and similarly forn < m.
With this notation at hand we can now state:

Theorem 1. The following statements hold
(a) Suppose that for som& > 0, C > 0, o« > 0, the following condition holds

For any N > 0O large enoughthere exists a non-empty Borel s&tN) c R such that
A(N) C [-K, K] and

IT(, m; E)| <CN* VE € A(N), Va,m: |n|<N,|m|<N (6)

(resp, with 1<n < N, 1<m <N in the case oft?(N)). Let N(T) = TY1+% and
let, for j = 1,2, B;(T) be thej/T-neighborhood of the seA(N(T)):

Bj(T)={E e R:3E' € AIN(T)), |[E — E'|<j/T}.
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Denote byF(z) the Borel transform of the spectral measure of the state J1:

366
. du(x)
F(E = .
(Etie) /Rx—<E+is)
Then for the initial state) = 61 and all 7 > 1 large enough, the following bound
holds with a suitable constart > O:
P(T) = Z ain, T) > —N¥2%(T) dE (1+1m? F(E +ig). (7)
nilnl > N(T) Ba(T)
In particular,
(8)

6 1-20
P(T) =2 TN (T)YUBL(T)| + u(B1(T))),

where|B| denotes the Lebesgue measure. This gives the following bound for the time-
9)

averaged moments:
Np+l—29((T)(|Bl(T)| + ,u(Bl(T)))'

~N| e

(XI5 )(T) >
(b) Suppose that there exists a setc [—K, K] of positive measur@(A) > 0 such

that

IT (n, m; E)|| < C(In|* + [m|*)
(10)

forall E€ A, n,m. Then
_ p—3u
> .
ﬁgl(P) 1+ o

(c) Assume that

IT (n, m; Eo)|| < C(Eo)(In|* + |m|™)
(11)

for someEp, uniformly inn, m, then
=1 -1 -1
W (T "+ uw(Eo—T ", Eo+T7 7))

P

(IXI5)(T)=CT
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Assume moreover thdip is an eigenvaludgpossible only ifx > %), so that there exists
W € €2, Y # 0 such thatHy = Eqy. Suppose thaty(1) # 0 (this is always true in
the case oft?(N)). Then

p+1—2u

14+ o (12)

By, (p) =

Proof. As in [8] we shall consider the case 6%(Z), because for?(N), the proof is
similar but simpler. The main part of the proof is virtually identical with that[8).
For the sake of completeness we shall briefly recall the main lines.

The starting point is the Parseval equality:

an,T)

1 oo
?/0 e 2T (5,, exp(—it H)d1)|? dt

_ i/ (50, R(E +i8)01) 2 dE,
2n R

where R(z) = (Hy —zI)™t ande = 1/T. Forz = E +ie, ¢ > 0, we define
¢ = R(z)01, P(n) = (¢p(n + 1), p(n))T. For eachn > 1, one has the inequality

[ &m)|| = |IT (1, L; )| 21| (13)
and for eachn < O,
[|&m)|| = |IT (n, 0; 2)|| 2| O)]. (14)

An upper bound for the norm of the transfer matrix with compieis obtained using
condition @) and[8, Lemma 2.1] Namely, let us fix som& > 1, ¢ = 1/T and define
N = N(T) = TY+%_ Then for everyE € B>(T) and 1<n < N

1T (n,1; E +ie)|| < DN, (15)

where D = Cexp(3C), and C is the constant from@). A similar bound holds for
negative values oh. Using bounds X3)—(15), one shows that for everg € B>(T),

D Un, RE+ie)61)° = N2 (1h(0))* + 19D + h(2)1%) (16)
n:n| > N/2

with uniform constantc > 0. It was shown in[8] that under the conditions of the
theorem one always has

O]+ oD+ (D] =c >0



368 D. Damanik et al./Journal of Functional Analysis 216 (2004) 362—-387

with uniform constant. What one can also observe (and this is a new point) is the fact
that

¢(1) = (R(2)01, 01) = F(2),

where F(z) is the Borel transform of the spectral measure corresponding to the pair
(H, 01). Therefore, it follows from 16) that

Y. 10w RE +i)01)|* > N1+ Im? F(E +ie)).
n:n| = N/2

Integrating this bound oveE € B(T), one proves {). Next, one observes that-#
Im? F(z) >2Im F(z). For any setS, denote bys, the e-neighborhood o Following

[19], one can see that
edE
d - @
/R S Py ey

d
/ d,u(x)/ 28+u82

= EM(S)-

Taking S = B1(T), we prove 8). Bound Q) immediately follows.

To prove part (b), one just taked(N) = A for every N. Since u(B1(T)) > u(A
(N(T)) = u(A) > 0, the result follows from bounddj.

Bound (1) of part (c) follows directly from @), taking A(N) = {Ep} for every N.
Finally, to prove the second part of (c), we go back T to obtain

f Im F(E +ie)dE

£

WV

c
(X2 )(T) > = NPH2(T) Im? F(E + i¢) dE,
' T Ba(T)

where Bo(T) = [Eg — 2¢, Eg + 2¢]. Under conditiony(1) # 0, one hasu({Eo}) > O.
Thus,

ce

Im F(E +ig) > ———
(E+ie) > F gt e2

Integration overBy(T) yields (12). O

Remark. Part (b) of Theorendl remains true if

IT (n, m; E)|| < C(E)(n|” + |m|%) (17)
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for all n,m and E € A with C(E) < oo for p-almost everyE. To prove this, it is
sufficient to take a smaller set’ C A of positive measure wher€(E)<C < oc.
Bound (0) should be compared with the well-known result [@5,16} If (17) holds
for someua € [0, %) on a setA of positive u-measure, then the restriction pfto A is
1 — 2u0-continuous. In particular,

By, (p) = p(1— 22).

This bound is better tharlQ) for small p, but for p large enough,10) is always better.
Moreover, (0) holds also ifa > 3.

3. Stability with respect to power-decaying perturbations

In this section, we discuss the stability of the crucial input to our dynamical bounds,
power-law bounds on transfer matrices, with respect to perturbations of the potential. It
is easy to see, and was noted[& Corollary 1.3] that finitely supported perturbations
of the potential cannot destroy such a power-law bound. Here we strengthen this to
stability with respect to power-decaying perturbations, where the allowed power depends
on the bound we can prove for the unperturbed problem.

Theorem 2. Assume that for some energy E and some constanthe transfer ma-
trices T associated wittiHy satisfy

T (n,m; E)|| <Ciln —m|* for everyn,m € Z with nm > 0. (18)
Assume further thatfor somee > 0, the perturbation W satisfies
[W(n)| < Co(l+ |n)"17%*=¢ for everyn € Z. (19)
Then the transfer matrices’ associated withHy y satisfy
T (n, m; E)|| < Caln —m|* for everyn,m € Z with nm >0. (20)
Proof. We present the proof in the special case where we assui)eofly for n >0
andm = 0 and then prove2Q) for n > 0 andm = 0. A slight variation of the argument
below works for generahk, m € Z with nm >0 (with a uniform constanCs in (20)).
Our strategy will be to work with solutions and employ a general perturbation method

developed by Kiselev et a[21].
Consider the unperturbed equatids) énd the perturbed equation

Y+ +yn =1+ V) + W) = EY®n). (21)



370 D. Damanik et al./Journal of Functional Analysis 216 (2004) 362—-387

Note that the transfer matriX’(n, O; E) is given by

T'(n,0; E) = (‘/’D(” +1) Y+ 1)> 7

lﬁD(n) lﬁN(n)

whereyp, ¥ solve 1) and obey

(lPD(l) lﬂN(D)_[
Yp0) YO )

Fix a complex reference solutiop of (5). For example, we could set = ¢p + i Py,
where ¢p, ¢y solve 6) and have the same initial conditions g, . By (18) we
have

lp(m)| < Clnl”. (22)

Let i be one of the basic solutiongp, Y of (21). Define p(n) by
yoy \ _ 1 dn) \ _——( )
(sinn) = 3 [ () =7 (560 )
= Im |:p(n) <¢$@1)>]

Write ¢(n) and p(n) in polar coordinates,

dn) = o)™, p(n) = R(n)e™

and define
0(n) = n(n) +y(n) and Un) = ——|¢( )2,

whereiw is the Wronskian ofp and ¢, that is,
2i Im(¢p(n + D)¢p(n)) = iw for everyn.

Clearly, the assertion of the theorem follows if we can show f@t) remains bounded
as |n| — oo. The key identity[21, Eq. (45)]is the following:

R(n+ 1% = R(m)?[1 + U (n) sin(20(n)) + U (n)? sirt(0(n))]. (23)
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It follows from (19) and @2) that U(n) is summable. Thus, boundedness Rfn)
follows from this and 23) (cf., e.g.,[20, Lemma 3.5]. This concludes the proof.(J

The theorem above implies the stability of the numbeand of the setsA(N),
B1(T), A under suitable power-decaying perturbations of the potential. On the other
hand, the measure of the set$B1(T)), u(A) and the Borel transformf(z) may
change after such a perturbation. In particular, it is possible tiiap) = O for the
perturbed operator in part (b) of TheoreinThus, bounds10) and (L2) are in general
not stable. Of course, we still get a dynamical bound for the perturbed model. For
example, we have the following consequence of Theorgérasad 2.

Corollary 3.1. Assume that for some enerdyy and some constant;, the transfer
matrices T associated witlily satisfy || T (n, m; Eg)|| < C1ln — m|* for everyn,m €
Z with nm > 0. Assume further thatfor somee > 0, the perturbation W satisfies
|W (n)| < Ca|n|~172%=¢ for everyn € Z. Then we have for the operatdiy ,,

p—1—4u

bop) >

for everyp > 0.

Proof. By Theorem2, we have that the transfer matric#$ associated withHy
satisfy | T’ (n, m; Eg)|| < Cln—m|* for everyn, m € Z with nm > 0. Then, an inspection
of the proof of Theorendl shows that this suffices to prove bountl) which yields

p=3x_
(X5 n=crwt

and the assertion of the corollary follows. More precisely, one can work independently
on the two half-lines and hence needs boundd Bt(n, m; E)| only for the case where
n, m have the same sign.l]

4. A class of pseudo-sparse potentials

In this section, we study a class of “sparse” potentials which includes various substi-
tution models and the prime model. These potentials are not all sparse in the standard
sense, but the point is that the class we discuss contains sparse potentials, and also a
number of other potentials that have been considered before and which can be studied
within the same framework.
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Let us consider the case where the potentlal defined on the half-linéN and
takes on two values, b € R. We assume the following fam large enough, that is, for
n>=>N:

(S1) Occurrences ob are always isolated, that is, ¥ (n) = b for somen, then
Vin—-1)=Vn+1 =a.

(S2) The value always occurs with odd multiplicity, that is, ¥ (n) = V(n+k+1) = b
andV(n+ j) =a, 1< j <k, thenk is odd.

Sparseness in this context refers to thie being isolated and the results below
holding for arbitrarily long gaps between consecutie However, some of the concrete
applications—for example the applications to substitution models—will not be sparse
in a traditional sense.

We can prove the following.

Theorem 3. SupposeV: N — {a,b} C R is a potential satisfying(S1) and (S2)
above. We have for eveny > 0,

_ p—>5
By () >~

Proof. Up to an initial piece, the transfer matrices are given by products of matrices
of the following form:

T(a, E)?*1 and T, E).
Let Eg = a. Then
T(a, E))?*! = (T'(a, E0)®!T(a, Eo) = (—1)!T(a, Eo) = +T(a, Eo).

Up to sign, this gives rise to powers of

T(a, EQ)T (b, Eq) = ((1) _01) (“Ib _01> = (a__lb _Ol>.

Clearly, such powers satisfy a bound which is linear in the number of factors. Thus,
the claim follows from 11). O

Remark. We can apply Corollar.1 and obtain that the dynamical bound in Theorém
is stable with respect to perturbatiolg obeying |W (n)| < Con—3—¢ for some fixed
¢ > 0 and everyn € N. Similarly, we have stability with respect to power-decaying



D. Damanik et al./Journal of Functional Analysis 216 (2004) 362—-387 373

perturbations for all the dynamical bounds that will be shown in this section and we
will not make this explicit for each one of them.

Let us now discuss the case where #i® occur with even multiplicities. That is,
we assume fon large enough,

(S3) The valuea always occurs with even multiplicity, that is, ¥(n) = V(n+k+1) =
bandV(n+ j)=a, 1< j <k, thenk is even.

In this case we can prove a dynamical bound even without assuming the sparseness
condition (S1). However, we need that — b| is not too large. Namely, we have the
following result:

Theorem 4. SupposeV : N — {a, b} C R is a potential satisfyindS3) above
(@) If |a — b| < 2, then for everyp > 0,

Bs,(p)Zp—1
(b) If |a —b| = 2, then for everyp > 0,

_ p—5
B (p) > 5.

Proof. The argument proceeds in a way similar to the proof above. Again, up to an
initial piece, the transfer matrices are given by products of matrices of the following
form:

T(a,E)? and T, E).

Again, let Eg = a. Then

T(a, Eg) = <2 _01>

and hence
T(a, E))? = (T(a, E0)®' = (=I)! = +I.

On the other handl (b, Ep) is elliptic when|a—b| < 2 and parabolic whefu—b| = 2.

Thus, in the former case, products of matrices of the f@rtm, E)? or T (b, E) remain
bounded, while in the latter case such products satisfy a bound which is linear in the
number of factors. The claim thus follows fromh1j. O
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Let us note that a result like part (a) of Theordnis implicitly contained in[17],
where mainly random polymer models are studied.

It is clear that whole-line analogs of the above theorems hold. In this case, we need
(S1) and (S2) or (S3) to hold fgn| large enough.

More importantly, these results cover a variety of seemingly very different cases:
First consider the period doubling Hamiltonian, which was already discusségi.in
On the alphabefd = {a, b} C R, consider the period doubling substitutiSita) = ab,
S(b) = aa. lterating ona, we obtain a one-sided sequence

u = abaaabababaaabaaab . ..

which is invariant under the substitution process. Define the associated suBghift

to be the set of all sequences overwhich have all their finite subwords occurring

in u. Here, we can consider either one- or two-sided sequences. This does not matter
for the results in this paper, but we remark that for substitution models, one generally
considers the two-sided case. kore Qpq, we define the potentidl, by V,(n) = w,.

It is easy to check that eacl,, satisfies (S1) and (S2) (even for everye Z) and

hence an application of Theoregallows us to recovef8, Theorem 3] However, we

can prove a more general result. Consider, for example, substitutions of the form

S(@) =a® b, Skb)=d?%, k1>1 (24)

The casek = 1,1 = 1 corresponds to the period doubling case. The potentials generated
by a substitution of form34) (by generating a one-sided fixed point and passing to
the associated subshift, as in the period doubling case above) are easily seen to obey
(S1) and (S2). On the other hand, substitutions of the form

S@a) =a®*b, Sb)=d?, k,1>1 (25)

give rise to potentials satisfying (S3) and hence Theodespplies in these cases. Thus
we may state the following:

Corollary 4.1. (a) Let S be a substitution of forif24), Q the associated subshifaind
for w € Q, let V,(n) = w,, n € Z. Then for everyw € Q, the potentialV,, gives rise
to an operator satisfying

-5
Bs,(p) = pT for everyp > 0.

(b) Let S be a substitution of forif25), Q2 the associated subshifand for w € Q,
let V,(n) = w,, n € Z. Then for everyw € Q, the potential V,, gives rise to an
operator satisfying

ﬁgl(p)>p—1 for everyp >0 if |a—b| <2
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and

-5 .
ﬁ(;l(p) =2 pT for everyp > 0 if |a —b| =2

Consider the following class of substitutions:
S(a) =ad"b", Sb)=a. (26)

The casen = n = 1 gives rise to the Fibonacci substitution. Hence, the substitutions
in (26) are usually called generalized Fibonacci substitutions: # 1, the resulting
potentials are Sturmian and will be discussed in this more general context in a later
section. Here, we restrict our attention to the case2. These substitutions and the
associated Schrodinger operators were studied, for examp|22j82,34]

If nis even, it is easily seen that ead, satisfies (S3) with the roles & andb
interchanged, that ify's always occur with even multiplicity. Thus, we can derive a
dynamical bound for the associated operators by applying Thedrem

If nis odd, the model satisfies neither (S2) nor (S3) but we can nevertheless employ a
similar argument. As a warmup, let us consider the ease3 (the special casa = 1,

n = 3 is usually called the nickel mean substitution). Then the transfer matrices are
given by products of matrices of the following form:

T(a,E) and T(b, E)°.

Let Eo=b+ 1. Then

T(b. Eo) = (i _01)

and hence
T(b, Eg)® = —1I.

This would allow us to prove bounds Cﬂ“gl(p) in the same way as in the proof of
Theorem4.
Let us now turn to the case of a general odg 3. Here, we can extend the above

idea and prove a result which applies to the substitution2@h \ith n odd but which

is much more general. Denote

(S4) There is some odk> 3 such that the valub always occurs with a multiplicity
which is a multiple ofk, that is, if V(in) = V(in+1+1) =a andV(n + j) = b,
1< j <, thenl = mk for somem € N.

Then, we can prove the following.
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Theorem 5. SupposeV : N — {a, b} C R is a potential satisfyindS4). Then there is
a set& C R of cardinality k — 1 such that for evenk € £, we have

(@) If |a — E| < 2, then for everyp > O,
By (p)=p—1
(b) If |a — E| = 2, then for everyp > 0,

_ p—5
ﬁ(sl(P) > -

Proof. In this case, the transfer matrices are given by products of matrices of the
following form:

T(a,E) and T(b, E).
It suffices to exhibitk — 1 energiesEg with
T (b, Eg)* = +1. (27)

This can be seen as follows: The matflxb, E)* is the monodromy matrix of the
constant potentiaV (n) = b, regarded as &-periodic potential. This gives rise to an
operator withk — 1 gaps. However, since the operator with this potential has spectrum
[b —2,b+ 2], all these gaps are degenerate. Every degenerate gap corresponds to an
energy where the monodromy matrix is equal4d, hence there are exactly— 1
energieskg for which we have 27). [

Putting everything together, we obtain the following result for the models generated
by substitutions from Z6):

Corollary 4.2. Let S be a substitution of forif26), Q and theV,’s as above

(a) If n>2 is even then for everym € Q, the potentialV,, gives rise to an operator
satisfying
B3, (p)=p —1for everyp > 0if |a—b| <2

and

_5 )
Bs,(p) = pT for everyp > 0if |a —b| = 2.
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(b) If n>3 odd then T (b, Eg)" = +I hasn — 1 solutions Eg € R and for each
such solutionEg, we have that for every € Q, the potentialV,, gives rise to an
operator satisfying

ﬁgl(p)Zp —1 foreveryp>0if |[a—Eg| <2

and

-5
Bs,(p) = pT for everyp > 0 if |a — Eg| = 2.

The final substitution model we consider is the following:
S(a) =a™b", S(b) =b"a". (28)

The casen = n = 1 gives rise to the Thue—Morse substitution. Hence, the substitutions
in (28) are usually called generalized Thue—Morse substitutions. They were considered,
for example, in[34]. If at least one ofm,n is even, (S3) holds and we can apply
Theorem4. In the remaining case, where both and n are odd (and at least one

is >3), (S4) holds and we can apply Theorésn Thus, for models generated by
generalized Thue—Morse substitutions, we obtain the following dynamical bounds:

Corollary 4.3. Let S be a substitution of forif28), Q2 and theV,,’s as above

(a) If at least one ofm, n is even then for everyw € Q, the potentialV,, gives rise
to an operator satisfying

ﬁ(;l(p)>p—1 for everyp >0 if |a —b| <2
and

_5 )
Bs,(p) = pT for everyp > 0 if |a —b| = 2.

(b) If we havem >3 odd then T (b, Eg)™ = £1 hasm — 1 solutionsEg € R and for
each such solutiorEg, we have that for everw € Q, the potentialV,, gives rise
to an operator satisfying

ﬁgl(p) >p—1 foreveryp>0 if |b—Egl <2

and

p

Bs,(p) = 5 for everyp > 0if |b — Eg| = 2.

An analogous result holds if we hawe> 3 odd
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(c) If m=n =1, then
ﬁgl(p) > p—1for everyp > 0.

Part (c) was proved if8] and is stated for completeness. One might expect the
bound ﬁgl(p) > p —1 to hold always. In fact, papdB4] claims, for every choice of
m,n,a,b, the existence of an energy, where the transfer matrices remain bounded.
However, the argument given in that paper is incomplete and it would be interesting
to prove or disprove this claim.

Next, we consider the prime Schrodinger operaiffime on £2(N) whose potential
is given by

_ | a if nis not prime
Vorime(n) = {b if 1 is prime

This operator was studied, for example, [;130]. Based on numerics and heuristics
contained in these two papers, one may expect the following: On the one hand, for
almost every energ¥, there is an¢? solution to Hprime¢p = E¢, that is, when one
varies the boundary condition at the origin, one gets pure point spectrum for almost
every boundary condition. On the other hand, the model displays non-trivial transport
for every boundary condition. We will confirm the latter below (the proof discusses
only the case of a Dirichlet boundary condition, but it readily extends to every other
boundary condition). Let us briefly discuss the first point. It is natural to Vig\he as
a sparse potential. In fact, this point of view was proposef@jnHowever, the current
methods in the spectral analysis of models with sparse potentials (see, in particular,
[20,28) are clearly insufficient to conclude anything for the prime model. We regard
this as an interesting problem and refer the reader ald@9pfor further motivation
to consider models of moderate sparseness.

Let us now turn to a dynamical result for the prime model. Clearly, (S1) and (S2)
are satisfied fon large enough. Hence, we get:

Corollary 4.4. For everya, b € R, the operator Hprime Satisfies

-5
Bs,(p) = pT for every p > 0.

Finally, we discuss a model which is sparse in the standard sense. Namely, pick
some integery > 2 and definen; = y" for k € N. Let Vsparsén) = b if n = ny for
somek and Vsparsén) = a otherwise. Schrodinger operators with potentials of this kind
were studied in[35]. Clearly, wheny is even, alln;’s are even, and when is odd,
all n;'s are odd, so we have (S1) and (S2). Thus, TheoBapplies and we get
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Corollary 4.5. For everya,b € R and y € N\ {1}, the potential Vsparsegives rise to
an operator satisfying

-5
Bs,(p) = pT for everyp > 0.

This can be improved if > ela — b|:

Proposition 4.6. Let

b 210g+/2+ (a — b)?

logy

Then the potentiaVsparsegives rise to an operator satisfying

_ 1—4y
O P ———

for ever 0.
1+v yp =

Proof. Write C(a, b) = /2+ (a — b)2. Then
IT(a, E=a)? Tk, E=a)| = -10 < C(a, b)
’ ’ a—b —1)| S

Ford, , = #{m <k<n:V(k)=>b}, we haved, ,, < log|n —m|/logy and hence
1T (n,m; E = a)|| < C(a, by < C(a, b)'09n=1/1097 = | — |09 C(.b)/10g7

This yields the assertion.[]

5. A hierarchical model
The hierarchical model is defined through the potential
V(n) = Af(ordn), (29)
where f is some real function and ordis the number of factors 2 in the prime
decomposition ofn. Sequence29) has some nice symmetries. Because (erd) =
ordn for all n and ord( - 2" + k) = ordk for m > 1, all | and |k| < 2™, analogous

identities hold forV. In particular,

VI-2"+k)y=Vk) =V(-k)=V{I -2" —k) (30)
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for any |l and/, m >1 and|k| < 2". The Schrodinger operator with such a potential
appeared first in workf26] and [31] with the special choice

m—1
fam)y=Y R,
k=0
whereR is a positive constant. The advantage of this choice is that in this case,
X =t My (E) =tr T(2",0; E)
satisfies an autonomous difference equaf®h],
Xm4l = x — 24 Rxp (x, — x,i_l +2), m>L1 (31)

The above recurrence and symmetri8€) (made it possible to obtain many rigorous
results about the spectrum of the corresponding Schrédinger operator. A detailed math-
ematical study of this model was carried out by Kunz eff28]. Among other things,

it was shown that for evenyR > 0, the spectrum is a Cantor set, and ®¢> 1, it

is purely singular continuous. From the point of view of the present article, it is in-
teresting that a countable infinite set of exceptional energies in the spectrum could be
identified explicitly. The 2 zerosE,x, 1<k <2™, of x,,(E) are simple andg,, =0
implies x,,+1 = —2 andx,,1; = 2 for [ > 1; compare §1). From this it was possible

to show thatkE,;, for m >0 and 1<k < 2", are lower (resp., upper) gap-edges in the
spectrum ofHy if A > 0 (resp.,A < 0) and they are dense in the spectrum. For the
corresponding gap-edge states, the following result was obt§#8d roposition 15]

Proposition 5.1. Let x,,(E) = 0 and lety be a solution ofHy = E.

(i) If ¥(0) =0, theny(k + 2"*+1) = —y (k) for every integer k
(i) If Y(0) # 0, theny (2 - 2™) = (—1)"(0) and asymptoticallyas ! — oo,

Y@L+ D2™) — 2™ =< (=D (0) fr (D) (32)
where
5o Rl R<?2
(%) WIIOQZR R > 2.

Here 4,, = AR"x,,—1(E) - - - xo(E), € € [0, 1) is the fractional part oflog,! and
= means equality in the leading order of |

We use this proposition to prove the following theorem.
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Theorem 6. For everyA # 0 and R > 0,

p—1—4x

B3 (P) > =

where

o = a(R) = max{1, log, R}.

Proof. We apply Propositiors.1 with m = 0 for which it provides the precise asymp-
totic form of the solutions. Becausg(E) = E, these belong t&& = 0. Let yp and
YN be the two solutions defined by the initial values

Yp0) =yYn(D) =0, Yp) =yy0O) =1 (34)

According to part (i) of Propositiob.1, y/p is a periodic solution with period 4, namely

Yp2) =0, Yp +1) = (-1 (35)

On the other hand,
Un@) = (=1, Y@+ 1) =< (DA fRO). (36)

Egs. @85 and @6) permit us to compute the asymptotic form Bi{n, m; 0). Because
of V(-n) = V(n), it suffices to considen >m >0. In what follows, we use the
simplified notation7(n, m). Let ¥ (n) = (Y'(n + 1) ' (n))T for i = 0,1. Then
Tn,0 = (Yp(n) Yn@m)). The determinant of any transfer matrix being unity, the
inverse is easy to compute. We find

T(n,m) = T(n,0)T(m,0)" % (37)
_ (!bD(n-f‘l) wN(”"‘l)) ( Y (m) —WN(m-f‘l)) (38)
Yp(n) Yy (n) —Yp(m)  Ypm+1) )°

With the short-hand notation
F(l) = (-D'yy@ + 1),

Egs. 85), (36), and @8) then yield

_ (1 FU)— F(k)
T(21,2k) = (—DFF (0 1 )
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. k+ { O -1
T2l +1,2k) = (-D*F (1 F() — F(k)>’

_ ki1 ( FU) —Fkk) -1
T(21,2k+1)_(—1)++< 1 o)’

_ k41 -1 0
T2+ 1,2k +1) = (=D (F(l)—F(k) _1>. (39)

All these matrices have the same norm. Denoting the Hilbert—Schmidt norfin Iy,
forn =21,21 +1 andm = 2k, 2k + 1, we have

1T, m) | < NIT (. m)ll2 = 2+ [F(1) — F(k)]? < \/2+ PLIR(M) = frIZ.
Therefore,

T (n,m; 0)|| <24fr(n/2)
for any n large enough and: <n. If R # 2, the assertion of the theorem obviously

follows from the definition 83) of fz and Theorenti. If R = 2, we note that for any
e >0,

T (n, m; 0)|| < Antte
if nis large enough. Therefore, by Theordm

p—95—4¢

Fop)>

for any ¢ > 0 and, thus, for =0 as well. [

Remark. The proof shows that we can apply Corollé8yl and obtain that the dynam-
ical bound in Theoren®6 is stable with respect to perturbatiod$ obeying |W (n)| <
Co|n|~1=2*=¢ for some fixeds > 0 and everyn € Z.

We note that instead oft = 0, we could have used Propositiénl with anym > 0
and any zero ofc,, (E). This holds because of the following:

Theorem 7. For any 4 # 0, R > 0, m>0, and k € {1,2,...,2"}, there exists a
positive numbeiC, g(m, E,x) such that for any» >n’' >0,

IT (1, 1’3 Emi)ll < C; g (my Enie) fR(27™10).
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Proof. We fix m > 0 and a zerak,,; of x,,. From Eq. 88) it is clear that we have to
bound the two particular solution84) of Hyy = E,xr. According to Propositiorb.1,
Yp is 2"+1l-antiperiodic and, thus, bounded. On the other hand,

Un@ 2" = (=D, Y@+ D2 — YN @") < (=D fr(D). (40)
Thus, the task is to boungty(n) in the intervals

20-2" <n <@ +1D2" and (2 +1)2" <n <21+ 1)2". (41)
To proceed with the proof, let us recall Eq. (3.29)[28], according to which

Yp(@") = xm—1---x0

for any energy. Thusyp(2") # 0 in the present cas&(= E), for otherwisex; = 0
for somei < m would imply |x;| = 2 for every j > i, contradictingx,, = 0. Then
uo = Yp/Yp(2") is a solution of the Schrodinger equation satisfying the boundary
conditionsug(0) = 0, ug(2") = 1 and, according to Propositidil, ug(k + 2"t1) =
—uo(k) for any k. From the general theory of second-order difference (differential)
equations, it follows that there exists a linearly independent solutiowith boundary
valuesu1(1l) = —1, u1(2™) = 0 and that we can writgy for 0<n <2" in the form

Yn®m) = Y2 uo(n) + Yy (O)us(n).

Next, we observe thai; can be expressed in terms of. Indeed, from Eq. 30) we
can see that the sequentgl), ..., V(2" — 1) is a palindrome,

verlon=verl+k, k=1..2"1-1

and, hence,
ur(n) =upg(2" —n), n=1,...,2" -1

Furthermore, the translational symmetry of the potential,
(VA-2"+1),....V{+D2" -1) = (VQ),..., V(2" - 1)),

valid for anyl, implies that the translates e andu1 can be used to givéy in each
of intervals 41). Altogether we find

Unm) = yYn((2 4+ D2Muo(n — 21 - 2™) + Y (2 - 2")uo((2 + 1)2" — n)
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if 21-2" <n< (2 +1)2" and

Unm) = Y231+ D2 ug(n — (20 +1)2™)
+n (2 + 1)2™)uo(2( + 1)2" — n)
if (20 + 12" <n<2(+1)2". Together with 40), in both intervals,

max|yp|

< - =
NS 1y am)

(YN + D2+ D).

Sincel <n/2"*1, we obtain that fom large enough

max|yp|

I fR2TL 2| + 1).
|¢D(2m)|(| | fr( n) + WYn@2MHI+ 1)

N ()] <

Due to @38), the assertion of the theorem follows from this bound]

6. Sturmian potentials

In this section, we discuss dynamical bounds for the standard one-dimensional qua-
sicrystal model which is given by a Schrddinger operator on the whole line whose
potential is given by

V(n) = Avy g(n), wherevy(n) = g, 1)(no +6mod D, (42)

where /. # 0 is the coupling constanty € (0, 1) irrational is the rotation number, and
0 € [0, 1) arbitrary is the phase. For more information on this family of operators, we
refer the reader to the survey articlgs33].

It is well known, and easy to see, that the spectrum of the ope#jqQy ¢ with
potential V from (42) is independent of), that is, for every/, w, there is a sef; ,
with o(H} 4 0) = 2, , for every 0.

Consider the continued fraction expansioncmf

1
1
1

ag_l_...

w =
a1+
az +

with uniquely determined,, € N (cf. [18]). The associated rational approximapis qx
are defined by

po=0, p1=1 pr=arpr-1+ pr—2,
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g0=1gq1=a1, qr=arqr-1+ qk—2.

The numberw is said to have bounded density if

n— 00

1 n
d(w) = limsup=Y " a; < oc. (43)
n
k=1
The set of bounded density numbers is uncountable but has Lebesgue measure zero.
The following was shown irj6] (see alsd14] for the case of zero phase):

Theorem 8. Supposean is a bounded density number. For everythere is a constant
C such that for every, everyE € X, ,, and everyn,m € Z, we have

IT).0.0(n, m; E)|| < Cln — m|**®), (44)
with
a4, w) =D -d(w)-logCy, (45)

where D is some universal constaiit; is given by

Ci=2+\/8+;t2 (46)

and d(w) is as in (43).
This yields the following.

Corollary 6.1. Let w be a bounded density number. Théor everyZ, 0, the operator
H; ¢ satisfies

p — 3u(4, )

Bs,(p) = Tioalo)

for everyp > 0,

with a(4, w) given by(45).

Since u(2, ) = 1, this is an immediate consequence bE)( This bound is better
than the corresponding result 8] (which follows from @), bounding from below
|B1(T)|). One should stress that as opposed to all the other examples discussed earlier,
the dynamical bound in Corollar§.1 is not stable with respect to perturbations of the
potential. This is due to the fact tha(X; ,,) may vanish for the perturbed measure.
However, by Corollary3.1, we have the following result:
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Corollary 6.2. Let w be a bounded density number and lebe arbitrary. If a(4, w)
is given by(45) and W satisfies

|W(n)| < Ca(1 4 |n|)"12#40=¢ for everyn € 7
for somee > 0, then for every0, the operatorH, ., o + W satisfies

p—1—4a(l, w)

for ever 0.
1+ a(h o) Veyp >

Bs,(p) =

As in the casen = (v/5—1)/2 and0 = 0, studied in[8], it is possible to improve this
lower bound somewhat by exhibiting a suitable g&tV) (stable under perturbation),
studying its Lebesgue measure, and applyi@g The setA(N) will again be given by
the spectra of suitable periodic approximants, and the Lebesgue measure can again be
bounded through a fine analysis of the trace map, akin to what is dof& 18,27}
compare alsg25]. We leave the details to the interested reader.
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