8 research outputs found

    Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics

    Get PDF
    The research of rare and devastating orphan diseases, such as idiopathic pulmonary fibrosis (IPF) has been limited by the rarity of the disease itself. The prognosis is poor—the prevalence of IPF is only approximately four times the incidence, limiting the recruitment of patients to trials and studies of the underlying biology. Global biobanking efforts can dramatically alter the future of IPF research. We describe a large-scale meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the globe. Finally, we combine this meta-analysis with the largest available meta-analysis of IPF, reaching 11,160 patients and 1,364,410 population controls. We identify seven novel genome-wide significant loci, only one of which would have been identified if the analysis had been limited to European ancestry individuals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection and note an unexplained sex-heterogeneity effect at the strongest IPF locus MUC5B.publishedVersionPeer reviewe

    Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.Peer reviewe

    KIF15 missense variant is associated with the early onset of idiopathic pulmonary fibrosis

    No full text
    Abstract Background: Idiopathic pulmonary fibrosis (IPF) has an unknown aetiology and limited treatment options. A recent meta-analysis identified three novel causal variants in the TERT, SPDL1, and KIF15 genes. This observational study aimed to investigate whether the aforementioned variants cause clinical phenotypes in a well-characterised IPF cohort. Methods: The study consisted of 138 patients with IPF who were diagnosed and treated at the Helsinki University Hospital and genotyped in the FinnGen FinnIPF study. Data on > 25 clinical parameters were collected by two pulmonologists who were blinded to the genetic data for patients with TERT loss of function and missense variants, SPDL1 and KIF15 missense variants, and a MUC5B variant commonly present in patients with IPF, or no variants were separately analysed. Results: The KIF15 missense variant is associated with the early onset of the disease, leading to progression to early-age transplantation or death. In patients with the KIF15 variant, the median age at diagnosis was 54.0 years (36.5–69.5 years) compared with 72.0 years (65.8–75.3 years) in the other patients (P = 0.023). The proportion of KIF15 variant carriers was 9- or 3.6-fold higher in patients aged < 55 or 65 years, respectively. The variants for TERT and MUC5B had similar effects on the patient’s clinical course, as previously described. No distinct phenotypes were observed in patients with the SPDL1 variant. Conclusions: Our study indicated the potential of KIF15 to be used in the genetic diagnostics of IPF. Further studies are needed to elucidate the biological mechanisms of KIF15 in IPF

    Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis

    No full text
    Summary A large number of fibroblast foci (FF) predict mortality in idiopathic pulmonary fibrosis (IPF). Other prognostic histological markers have not been identified. Artificial intelligence (AI) offers a possibility to quantitate possible prognostic histological features in IPF. We aimed to test the use of AI in IPF lung tissue samples by quantitating FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with a deep convolutional neural network (CNN). Lung tissue samples of 71 patients with IPF from the FinnishIPF registry were analyzed by an AI model developed in the Aiforia® platform. The model was trained to detect tissue, air spaces, FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with 20 samples. For survival analysis, cut-point values for high and low values of histological parameters were determined with maximally selected rank statistics. Survival was analyzed using the Kaplan-Meier method. A large area of FF predicted poor prognosis in IPF (p = 0.01). High numbers of interstitial mononuclear inflammatory cells and intra-alveolar macrophages were associated with prolonged survival (p = 0.01 and p = 0.01, respectively). Of lung function values, low diffusing capacity for carbon monoxide was connected to a high density of FF (p = 0.03) and a high forced vital capacity of predicted was associated with a high intra-alveolar macrophage density (p = 0.03). The deep CNN detected histological features that are difficult to quantitate manually. Interstitial mononuclear inflammation and intra-alveolar macrophages were novel prognostic histological biomarkers in IPF. Evaluating histological features with AI provides novel information on the prognostic estimation of IPF

    Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics

    No full text
    Summary The research of rare and devastating orphan diseases, such as idiopathic pulmonary fibrosis (IPF) has been limited by the rarity of the disease itself. The prognosis is poor—the prevalence of IPF is only approximately four times the incidence, limiting the recruitment of patients to trials and studies of the underlying biology. Global biobanking efforts can dramatically alter the future of IPF research. We describe a large-scale meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the globe. Finally, we combine this meta-analysis with the largest available meta-analysis of IPF, reaching 11,160 patients and 1,364,410 population controls. We identify seven novel genome-wide significant loci, only one of which would have been identified if the analysis had been limited to European ancestry individuals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection and note an unexplained sex-heterogeneity effect at the strongest IPF locus MUC5B

    Seasonal cold hardiness in maritime pine assessed by different methods

    No full text
    Three screening methods-visual scoring (V), relative conductivity (C) and fluorometry (F)-were used to study the genetic variation in cold hardiness among six populations of maritime pine (Pinus pinaster Ait.) comprising both Atlantic and Mediterranean origins. Freezing damage assessments were carried out in three organs-needles, stems and buds-in two seasons, spring and autumn. We found high levels of genetic differentiation among populations for cold hardiness in autumn, but not in spring. Within populations, differences were always significant (p < 0.05) no matter which organ or screening method was used. Measuring F was the fastest and most easily replicated method to estimate cold hardiness and was as reliable as V and C for predicting the species performance. In autumn, there was a positive correlation between the damage measured in all three types of organs assessed, whereas in spring, correlation among organs was weak. We conclude that sampling date in spring has a crucial impact to detect genetic differences in maritime pine populations, whereas autumn sampling allows more stable comparisons. We also conclude that the fluorometry method provides a more efficient and stable comparison of cold hardiness in maritime pine. © 2014 Springer-Verlag Berlin Heidelberg
    corecore