288 research outputs found
Analytic frameworks for assessing dialogic argumentation in online learning environments
Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation
Collaboration scripts - a conceptual analysis
This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learners’ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts
Modeling what we sample and sampling what we model: challenges for zooplankton model assessment
Zooplankton are the intermediate trophic level between phytoplankton and fish, and are an important component of carbon and nutrient cycles, accounting for a large proportion of the energy transfer to pelagic fishes and the deep ocean. Given zooplankton's importance, models need to adequately represent zooplankton dynamics. A major obstacle, though, is the lack of model assessment. Here we try and stimulate the assessment of zooplankton in models by filling three gaps. The first is that many zooplankton observationalists are unfamiliar with the biogeochemical, ecosystem, size-based and individual-based models that have zooplankton functional groups, so we describe their primary uses and how each typically represents zooplankton. The second gap is that many modelers are unaware of the zooplankton data that are available, and are unaccustomed to the different zooplankton sampling systems, so we describe the main sampling platforms and discuss their strengths and weaknesses for model assessment. Filling these gaps in our understanding of models and observations provides the necessary context to address the last gap—a blueprint for model assessment of zooplankton. We detail two ways that zooplankton biomass/abundance observations can be used to assess models: data wrangling that transforms observations to be more similar to model output; and observation models that transform model outputs to be more like observations. We hope that this review will encourage greater assessment of zooplankton in models and ultimately improve the representation of their dynamics
So Small, So Loud: Extremely High Sound Pressure Level from a Pygmy Aquatic Insect (Corixidae, Micronectinae)
To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6–82.2) SPL rms re 2.10−5 Pa with a peak at 99.2 (85.7–104.6) SPL re 2.10−5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure
Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
<p>Abstract</p> <p>Background</p> <p><it>Saccharomyces cerevisiae </it>is the first eukaryotic organism for which a multi-compartment genome-scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast has been introduced. These metabolic models have been extensively used to elucidate the organizational principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic processes, even the recent yeast model (i.e., <it>i</it>MM904) remains significantly less predictive than the latest <it>E. coli </it>model (i.e., <it>i</it>AF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no grow experiments in comparison to the <it>E. coli </it>model.</p> <p>Results</p> <p>In this paper we make use of the automated GrowMatch procedure for restoring consistency with single gene deletion experiments in yeast and extend the procedure to make use of synthetic lethality data using the genome-scale model <it>i</it>MM904 as a basis. We identified and vetted using literature sources 120 distinct model modifications including various regulatory constraints for minimal and YP media. The incorporation of the suggested modifications led to a substantial increase in the fraction of correctly predicted lethal knockouts (i.e., specificity) from 38.84% (87 out of 224) to 53.57% (120 out of 224) for the minimal medium and from 24.73% (45 out of 182) to 40.11% (73 out of 182) for the YP medium. Synthetic lethality predictions improved from 12.03% (16 out of 133) to 23.31% (31 out of 133) for the minimal medium and from 6.96% (8 out of 115) to 13.04% (15 out of 115) for the YP medium.</p> <p>Conclusions</p> <p>Overall, this study provides a roadmap for the computationally driven correction of multi-compartment genome-scale metabolic models and demonstrates the value of synthetic lethals as curation agents.</p
Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.
<div><p>Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in <em>Saccharomyces cerevisiae</em>.</p> </div
The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2
Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 μatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2—at beyond near-future ocean acidification levels—affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious
Development of Social Vocalizations in Mice
Adult mice are highly vocal animals, with both males and females vocalizing in same sex and cross sex social encounters. Mouse pups are also highly vocal, producing isolation vocalizations when they are cold or removed from the nest. This study examined patterns in the development of pup isolation vocalizations, and compared these to adult vocalizations. In three litters of CBA/CaJ mice, we recorded isolation vocalizations at ages postnatal day 5 (p5), p7, p9, p11, and p13. Adult vocalizations were obtained in a variety of social situations. Altogether, 28,384 discrete vocal signals were recorded using high-frequency-sensitive equipment and analyzed for syllable type, spectral and temporal features, and the temporal sequencing within bouts. We found that pups produced all but one of the 11 syllable types recorded from adults. The proportions of syllable types changed developmentally, but even the youngest pups produced complex syllables with frequency-time variations. When all syllable types were pooled together for analysis, changes in the peak frequency or the duration of syllables were small, although significant, from p5 through p13. However, individual syllable types showed different, large patterns of change over development, requiring analysis of each syllable type separately. Most adult syllables were substantially lower in frequency and shorter in duration. As pups aged, the complexity of vocal bouts increased, with a greater tendency to switch between syllable types. Vocal bouts from older animals, p13 and adult, had significantly more sequential structure than those from younger mice. Overall, these results demonstrate substantial changes in social vocalizations with age. Future studies are required to identify whether these changes result from developmental processes affecting the vocal tract or control of vocalization, or from vocal learning. To provide a tool for further research, we developed a MATLAB program that generates bouts of vocalizations that correspond to mice of different ages
Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism
The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species
- …