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Abstract

Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype
relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and
optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental
conditions. The objective function to be used in such optimization algorithms is directly linked with the biological
hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although
linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the
resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable
sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry
representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a
new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation
from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather
than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation
independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For
example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several
genetic interactions in Saccharomyces cerevisiae.
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Introduction

The fundamental role of metabolism within a living cell has

become a focal point of study in many disciplines, such as cell

biology, physiology, medicine and synthetic biology. The assembly

of all reactions and metabolites into a genome-scale metabolic

network provides a comprehensive structural framework for

integrative data analysis [1,2], as well as for quantitative modeling

of cellular metabolism [3–6]. As the solution space for the

metabolic flux state of the cell is typically very large, constraint

based optimization approaches are often applied for simulating

metabolic fluxes. In essence, these approaches search for an

optimal flux distribution that maximizes or minimizes an

appropriate biological objective function while satisfying the mass

balance and metabolite exchange constraints. Among these, Flux

Balance Analysis [7] is a widely used simulation tool that utilizes a

linear programming formulation for maximization of growth

(synthesis of biomass constituents) as biological objective function.

FBA has been applied with various degrees of success, albeit

mostly for ‘‘wild-type’’ or unperturbed metabolic networks [8,9].

In addition to FBA, various other objective functions are

frequently used, including minimization of overall intracellular

flux and maximization of ATP yield, among others. An overview

of various commonly used objective functions and their evaluation

against experimental data for Escherichia coli can be found in

Schuetz et al. [10]. In case of genetically or environmentally

perturbed networks, Minimization of Metabolic Adjustment

algorithm - MoMA [11] - has been reported to better represent

the biological observations [11–14]. The hypothesis underlying

MoMA is that fluxes in a perturbed cell (e.g. a mutant) will be

redistributed so as to be as similar as possible to the wild-type.

The biological principles exemplified by simulation tools for

both wild-type and perturbed networks are undeniably fascinating,

which is confirmed by their numerous applications – including

prediction of genetic interactions [2,15,16], metabolic engineering

[13,14,17], microbial community modeling [18,19] and search for

evolutionary constraints in relation to different objective functions

[20]. Several of the objective functions commonly used in these

and other applications rely on the use of linear combination of

fluxes, e.g., MoMA or minimization of overall intracellular flux

(Table 1). We found that the mathematical formulation of this

class of problems (i.e. where linear combination of fluxes is part of
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the objective function) is sensitive to the representation of the

reaction stoichiometry, with results strongly dependent on the

adopted scaling of the stoichiometric coefficients. Such dependen-

cy confounds the biological interpretation of simulation results, as

biochemically equivalent alternative representations of the same

network can lead to contradictory predictions upon a given genetic

or environmental perturbation. For example, the status of a given

gene may change from non-essential to essential while using

biochemically equivalent representations of the stoichiometry of

the metabolic network (Table S1). As the stoichiometric

representation of any reaction is subjective (often scaled to have

coefficient of 1 for one of the reactants/products) and a typical

genome-scale modeling problem involves hundreds of reactions,

there are infinitely many biochemically equivalent ways to

represent a given metabolic network. Any simulation algorithm

should therefore be independent of the stoichiometry representa-

tion.

We motivate the need for rethinking the problem formulation

for metabolic modeling by illustrating how the current methods

lead to incoherent biological predictions when alternatively

representing the reaction stoichiometry. Tackling a proper

problem formulation, we propose a new methodology for

metabolic modeling – Minimization of Metabolites Balance

(MiMBl), which accounts for reaction stoichiometry in the

objective function by mapping the flux space into the metabolite

turnover space. As intended, MiMBl shows robust predictions

independently of the stoichiometry representation. We demon-

strate the biological relevance of the new formulation with

increased power for predicting genetic interactions in the

metabolic network of S. cerevisiae. In a recent study reporting a

large genetic interactions dataset covering the S. cerevisiae metabolic

network [2], FBA was found to have limited capability for

predicting the experimentally observed interactions, partially due

to the lack of regulatory information. Within this study we

successfully challenged MiMBl to accomplish the task of extending

the range of genetic interactions that can be predicted. By

combining the results from MiMBl and FBA, we probe the

operating mechanisms underlying genetic interactions within

metabolic networks.

Results/Discussion

Several of the biological objective functions widely used in

metabolic modeling are currently formulated as linear (or

quadratic) combination of fluxes. Minimization of sum of

intracellular fluxes and minimization of metabolic adjustment

belong to this class and are herein used as case studies of biological

principles that can be robustly formulated by using MiMBl. Two

different genome-scale reconstructions of the S. cerevisiae metabolic

network are used, viz. iFF708 [21] and iAZ900 [22], as the choice

of the appropriate metabolic reconstruction depends on the

biological question to be addressed (Methods).

Stoichiometry representation and minimization of sum of
fluxes

Minimization of the sum of intracellular flux is a routinely used

objective function for estimating intracellular fluxes [10,20,23,24].

By using the iFF708 S. cerevisiae genome-scale metabolic recon-

struction [21] together with experimentally determined exchange

rate constraints (Text S1), we illustrate how the use of this

objective function leads to inconsistent predictions when using

numerically different, but biochemically equivalent, reaction

stoichiometry. Linear scaling of all stoichiometric coefficients of

a given reaction (e.g. multiplication by a scalar h, Methods)

preserves the stoichiometry and must not affect the simulation

outcome for a correct problem formulation. However, in this case,

scaling of a single reaction (RPI1) results in diverting the carbon

flow from glycolysis to pentose phosphate pathway, which is one of

the most important metabolic branch points (Fig. 1). This

deviation was verified not to be consequence of alternative optima

of the same mathematical solution (Fig. S2), thus representing

different biological solutions.

In order to provide insight into the nature of the problem

leading to the susceptibility of the solution towards alternative

representation of the stoichiometric matrix, we use a toy-model

depicted in Fig. 2a. As a case study, minimization of metabolic

adjustment was chosen as biological principle and formulated as

minimization of Manhattan distance (a commonly used formula-

tion of MoMA, termed lMoMA [25]). Fig. 2 also illustrates the

representation dependency of the Euclidean distance formulation

of MoMA (quadratic MoMA, as originally proposed in [11]). In

order to provide an intuitive insight, the following discussion is

centered on lMoMA. Similar explanation holds true in quadratic

space in the case of quadratic MoMA. In the wild-type toy-model,

flux goes from A to D via R5. The goal is to predict flux

distribution in the mutant lacking R5. The biological principle of

minimization of metabolic adjustment dictates rewiring of the flux

through R6. However, lMoMA found contradictory optimal

solutions, i.e. solutions that re-route the flux via R2–R3–R4 or

R6, depending on the stoichiometric representation of R6

(Fig. 2b). Insight into the cause of this behavior can be gained

by analyzing the optimal objective function values, i.e. distances, as

function of hR6 (Fig. 2d). Smaller hR6 implies higher numerical

value of the flux through R6, hence higher contribution of R6 to

the distance. Consequently, after a certain value of hR6, the

activation of the longer R2–R3–R4 pathway more than compen-

sates the use of R6. The two solutions are not alternative optima,

as the objective function value neither remains constant nor

linearly scales with hR6. Such non-linear dependency of the

Author Summary

One of the challenging tasks in systems biology is to
quantitatively predict the metabolic behavior of the cell
under given genetic and environmental constraints. To this
end, genome-scale metabolic reconstructions and simula-
tion tools are indispensable. The choice of the objective
function to be used for simulating genome-scale meta-
bolic models is dependent on the biological context and
one of the most relevant parameters for successful
modeling. Formulation of the intended objective function
often requires the use of multiple fluxes, e.g. the sum of
fluxes through ATP-producing reactions. We demonstrate
that the existing tools confound biological interpretation
of the simulations due to undesired dependence on the
representation of stoichiometry and propose a new tool –
Minimization of Metabolites Balance (MiMBl). MiMBl allows
casting of the desired biological objective functions into
linear optimization models and gives consistent simulation
results when using numerically different but biochemically
equivalent stoichiometry representations. We demonstrate
relevance of MiMBl for addressing biological questions
through improved predictions of genetic interactions
within the yeast metabolic network. Genetic interactions
imply functional relationship between the genes and
therefore allow assessing different hypotheses for the
underlying biological principles. MiMBl explains several of
the genetic interactions as outcome of flux re-routing for
minimal metabolite turnover adjustments.

Objective Functions in Metabolic Modeling
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objective function value on the scalar hR6 violates the requirement of

a correct problem formulation. Indeed, we analytically demonstrate

that the optimality condition for the linear programming problem

after scaling is not guaranteed to be satisfied in the case of using sum

of fluxes as part of the objective function (Methods). Notably,

widely used FBA-like problems (max/minimization of a single flux)

are perfectly robust concerning the scaling of the stoichiometric

coefficients. As a single flux is used in the objective function, the

relative values of all the remaining fluxes (which depend on the

stoichiometry representation) does not influence the optimal

solution to be found (for a theoretical proof, see Text S2).

The mathematical caveat illustrated above means that the

contribution of the desired biological objective function towards

the obtained solution is inseparable from that of the artifacts of

stoichiometry representation. Importantly, in large metabolic

networks the effects of stoichiometric representation of reactions

are cumulative. As we herein show, this problem can be solved by

proper normalization of the objective function variables with respect

to stoichiometric representation of the reactions. To achieve such

normalization, we devised two approaches, normalized lMoMA

(normlMoMA) and Minimization of Metabolites Balance (MiMBl).

In normlMoMA, each variable in the objective function is

normalized by its value in the wild-type flux distribution. Albeit

being simple, this normalization method has three major draw-

backs: i) many reactions often have null fluxes in the wild-type, thus

posing a problem for normalization (Methods, Text S2 and Fig.
S3); ii) it requires a reference flux distribution to obtain the

normalization factors, making it inappropriate to formulate

objective functions such as minimization of overall intracellular

flux; and iii) the influence of each flux on the metabolic adjustment

would be exclusively due to its fold change, not taking into account

that reactions carrying higher fluxes could have a stronger impact

on the predicted flux distribution, as implied in the original concept

of minimization of metabolic adjustment.

Minimization of Metabolites Balance - MiMBl
To obtain a biological meaningful and mathematically robust

normalization, we propose Minimization of Metabolites Balance

(MiMBl) as a new method for metabolic modeling. The objective

function in MiMBl is formulated as a linear combination of

metabolite turnovers (tM). The turnover of a metabolite is the sum

of all fluxes producing (or consuming) it, multiplied by the

corresponding stoichiometric coefficients (Methods). The objec-

tive function for minimization of metabolic adjustment is

reformulated to include metabolite turnovers instead of fluxes

(Fig. 2c). Because the stoichiometric coefficients are taken into

account while calculating tM, MiMBl is robust to the linear scaling

of the stoichiometric matrix, analytical proof of which is presented

in the Methods section. In case of the toy-model (Fig. 2a, d), this

robustness is illustrated by the invariant nature of the objective

function as well as the flux distribution. Note that the flux through

R6 linearly scales with hR6, while the turnover of all metabolites is

conserved. The normalization implied in MiMBl formulation is

suitable for addressing a variety of biological questions involving

different objective functions, such as minimization of overall

intracellular flux (by using a null vector for wild-type flux

distribution) or maximization of ATP yield (by maximizing the

ATP turnover for a given substrate uptake rate), among others

(Table 1).

While mapping the flux space into the metabolite space for the

objective function formulation, as we do for MiMBl, it is possible

that, for a few cases, alternative flux distributions are found around

a given metabolite. We therefore introduce a second optimization

step that reinforces the proximity to the reference flux distribution.

This is achieved by using a normlMoMA routine where the

optimal objective function value found in the first MiMBl

optimization step is used as an additional constraint (Methods).

Nevertheless, highly connected metabolites ensure a degree of

network connectivity, which is sufficient for decreasing the number

of situations where alternative flux distributions around the same

metabolite are picked by MiMBl. Indeed, we did not find any case

in the simulations performed for this study where growth

prediction was altered in the second optimization step. An

example case where the second optimization step will be more

relevant is simulations involving export of metabolites, where the

choice of a particular transporter (as in the reference flux

Table 1. Formulation of different biological objective functions using MiMBl.

Biological objective
function

Previous objective
function Description

MiMBl objective
function Description

Minimization of metabolic
adjustment

min
P
i[N

DvWT
i {vi D

[11]

Minimization of Manhattan
distance between the vectors
containing the reference and
mutant flux distributions

min
P

m[M

DtWT
m {tm D Minimization of Manhattan

distance between the vectors
containing the reference and
mutant intracellular
metabolites turnover

Minimization of overall
intracellular flux

min
P
i[N

Dvi D

[23]

Minimization of the sum of all
intracellular fluxes

min
X
m[M

DtWT
m {tm D

tWT ~0

Minimization of the sum of
intracellular metabolites
turnover

Maximization or Minimization
of ATP yield max =min

P
vATP[N

vATP

vglucose

[35,36]

Max/Minimization of the
sum of all reactions
producing ATP

max =min
DtWT

ATP{tATP D
vglucose

tWT ~0

Max/Minimization of ATP
turnover

Minimization of redox
potential min

P
vNADH[N

vNADH

vglucose

[35]

Minimization of the sum
of all reactions producing
NADH

min
DtWT

NADH {tNADH D
vglucose

tWT ~0

Minimization of NADH turnover

Maximization of biomass* max vGrowth

[7,37]
Maximization of
biomass flux

max tbiomass Maximization of biomass
turnover

*Note: Biomass production within metabolic models is typically represented as a single reaction accounting for all the biomass constitutes. Therefore, FBA and MiMBl
are equivalent for maximizing biomass.
doi:10.1371/journal.pcbi.1002758.t001

Objective Functions in Metabolic Modeling
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distribution) among several alternative options is desired. A more

thorough analysis of MiMBl alternative optima in a genome-scale

network is presented below (Fig. 3).

Lack of stoichiometric normalization confounds
biological interpretation

In order to estimate the extent to which the lack of

normalization of stoichiometric coefficients within the objective

function influences the biological interpretation of simulation

results, we used lMoMA for simulating gene knockouts in the S.

cerevisiae genome-scale metabolic model iFF708 [21]. In case of

single gene knockout, three genes were found to change their

status from non-essential to essential while using two biochemically

equivalent matrix representations (Table S1). For instance, the

mutant lacking YCR012W, coding for a 3-phosphoglycerate kinase

(pPGK1), was predicted to be viable when using the as-published

representation of the stoichiometric matrix S0 [21], and non-viable

while using the biochemically equivalent matrix S1 (Methods).

Based on such contradictory results, conclusions cannot be taken

on whether YCR012W is predicted to be essential or not. As the

number of deleted genes (or other network perturbations)

increases, cumulative phenotypic effects related to the functional

interactions between the genes are expected to take place and

examples as the one mentioned above become even more striking.

For triple gene knockouts, more than 200,000 triplets were found

such that their predicted phenotype switched from lethal to non-

lethal (or vice-versa) for the two biochemically equivalent matrix

representations (Table S1). From a biotechnological perspective,

predictions from genome-scale modeling have direct influence on

the choice of gene targets selected for metabolic engineering. By

using lMoMA, we identified metabolic engineering strategies (by

simulating all possible combinations of knockouts of up to three

genes, Text S1) for production of two different compounds in

yeast: succinate – a native product, and vanillin-glucoside – a

heterologous product. Not only a significant fraction of mutants

had divergent predictions for product yield when using two

biochemically equivalent stoichiometric matrices, but also several

highly ranked strategies in one case were low priority targets in the

other (Figs. S4, S5, S6, S7). Moreover, we also observed that the

number of predicted synthetic lethal pairs differed by more than

two-fold when using alternative stoichiometric matrix representa-

tions (Table S2). These inconsistencies have immediate implica-

tions on the consequent biological interpretation, as well as on the

Figure 1. Minimization of overall intracellular flux leads to
divergent predictions for flux distribution when using bio-
chemically equivalent stoichiometry representations. Shown are
predicted fluxes through key pathways within the S. cerevisiae central
carbon metabolism, using numerically different but biochemically
equivalent stoichiometric representation of reaction RPI1 (hRPI1,
Methods). hRPI1 is represented on the x-axis, while fold-change of
fluxes relatively to h= 1 is represented on the y-axis. A representative
reaction from each of the pathways was selected to illustrate the flux re-
arrangement; FBA1 for glycolysis, ZWF1 for pentose phosphate
pathway, CIT1 for tricarboxilic acid cycle and NID1 for oxidative
phosphorylation. Note that h= 1 is an arbitrary reference, as the
stoichiometric representation of any reaction is subjective, often scaled
to have coefficient of 1 for one of the reactants/products.
doi:10.1371/journal.pcbi.1002758.g001

Figure 2. MiMBl shows robust simulation results while using
alternative stoichiometry representations – illustration using a
toy-model. a) Toy-model: R1 to R7 and A to D represent reactions and
metabolites, respectively. In the wild-type, or reference, flux goes from
A to D via R5. R6 and R2–R3–R4 are two alternative pathways for flux re-
distribution after deletion of R5. b) Flux through reactions R2 (full
symbols) and R6 (open symbols) obtained after simulation of
minimization of metabolic adjustment with lMoMA (black), quadratic
MoMA (qMoMA, gray) and MiMBl (red) using numerically different but
biochemically equivalent representations of reaction R6 (given by
different scaling factor hR6, Methods). c) Formulation of objective
functions of minimization of metabolic adjustment for lMoMA, qMoMA
and MiMBl (Methods). d) Optimal objective function value (distance)
obtained for minimization of metabolic adjustment using lMoMA
(black), qMoMA (gray) and MiMBl (red) as function of hR6.
doi:10.1371/journal.pcbi.1002758.g002

Objective Functions in Metabolic Modeling
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experimental design, and can be successfully overcome by using

MiMBl (Fig. S4, Table S3).

Alternative optima and sensitivity towards reference flux
distribution

The above analysis proved the robustness of MiMBl towards

stoichiometric representation of metabolic reactions. However,

some degree of uncertainty in the simulation results might still

exist, as we shall show here, essentially arising from two main

sources (Fig. S8a): i) sensitivity of the results towards the initial

wild-type flux distribution used as input for minimizing the

metabolic distance; and ii) potential non-uniqueness of the linear

programming solution while simulating the mutant phenotype, i.e.

existence of alternative optima. The sensitivity analysis for MiMBl

towards both sources of uncertainty was performed using iAZ900

reconstruction of the yeast metabolic network, as the same

reconstruction is subsequently used to study genetic interactions

within the yeast metabolism. Both sources of variability also have

impact on lMoMA simulation results (Fig. S9).

Firstly, we analyzed the sensitivity towards the wild-type (or

reference) flux distribution used as input for minimization of

metabolic adjustment. Using an accurate reference flux distribu-

tion is crucial for obtaining biologically meaningful simulation

results. While some metabolite exchange rates are commonly

available as experimentally derived constraints for the wild-type,

they are usually not sufficient to uniquely estimate the corre-

sponding intracellular fluxes, e.g. by using FBA (Figs. S8a and
S1). It has been previously shown that the use of alternative

optima within the reference flux distribution obtained with FBA

can affect the prediction of growth upon gene deletions using

quadratic MoMA [11]. We herein performed a similar analysis by

using MiMBl. The growth of single gene deletion mutants was

simulated with MiMBl while using alternative optimal FBA flux

distributions as reference (Methods). Similarly to what was

previously observed for quadratic MoMA [11], cases were found

where the use of alternative FBA flux distributions, as input to

MiMBl, influences the growth prediction (Fig. 3). 70% of the

predictions of single gene deletion phenotypes were consistent

across all FBA-alternative-optima used, while the remaining 30%

showed dependence on the input reference flux distribution. Use

of additional experimentally determined constraints, for instance

as obtained with 13C flux analysis, will be useful for reducing the

uncertainty in the input flux distribution and thereby in obtaining

more robust predictions.

In order to assess the variability due to potential non-uniqueness

of the optimal solution obtained with MiMBl (Fig. S8a), we

performed a flux variability analysis [26]. Biologically, the

alternative optima correspond to the existence of alternative

pathways that result in equivalent mutant phenotypes with regards

to the required metabolic adjustment. For a fixed reference flux

distribution, we calculated the range of variability of intracellular

fluxes upon constraining the metabolic adjustment (i.e. sum of

metabolite turnover distance) to its optimal value (Methods). All

of the tested fluxes were observed to have very low or no variability

(vi
min/vi

max.0.99) across all single gene deletion phenotypes.

Utility of the second step of MiMBl was seen in case of the flux

through PGM1 upon deletion of YOR128C (Fig. S8b). Neverthe-

less, existence of a unique solution is problem dependent and it

should be verified whether the possibility of alternative optima

affects the prediction of fluxes of interest. Therefore, we performed

an exhaustive analysis of variability of growth prediction across all

single gene deletions, as well as all double gene deletions included

in the genetic interactions case study. Growth was uniquely

predicted in all these cases (Fig. S8c).

Predicting genetic interactions by using MiMBl
To what extent MiMBl contributes for increasing biological

understandings gained from the application of optimization-based

metabolic modeling? To address this question, we used one of the

most recent and comprehensive S. cerevisiae models, iAZ900 [22],

to run simulations for single and double gene knockouts and

challenged MiMBl to predict the epistasis scores of all significantly

interacting non-essential gene pairs reported by Szappanos et al.

[2]. Genetic interaction networks are valuable resources towards

deciphering the complex genotype-phenotype relationships. A

genetic interaction between two genes occurs when the phenotype

displayed by a double deletion mutant is different than the one

expected based on the phenotypes of the single mutants.

Accordingly, two genes can display positive, negative or no

interaction. In order to capture most of the biological information

contained in the experimental dataset, we used two different

objective functions, maximization of growth (FBA) and minimi-

zation of metabolic adjustment (MiMBl). FBA is expected to cover

situations where maximization of growth is the cellular objective,

while MiMBl will account for regulatory effects inherent to the

wild-type flux distribution, in the sense that the flux distribution in

the perturbed network is kept as close as possible to that of the

wild-type. This principle of proximity to the wild-type (or the

reference) should partially reflect principles of flux reorganization

in genetically perturbed networks. Although, both FBA and

MiMBl performed equally well concerning gene essentiality

predictions (,60% sensitivity, Text S1), the benefit of using

MiMBl as a biological objective function became apparent while

predicting genetic interactions. This implies that the biological

regulatory principle underlying MiMBl is manifested in yeast

Figure 3. Sensitivity of MiMBl towards the use of alternative
reference flux distributions. a) The histogram shows the distribu-
tion of variability in the predicted growth of single gene knockout
mutants while using 500 different FBA alternative optima as reference
flux distributions. b) Case study of YLR377C knockout simulations using
different reference flux distributions as input. The predicted growth
varies between 50–100% of that of the wild-type.
doi:10.1371/journal.pcbi.1002758.g003

Objective Functions in Metabolic Modeling
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(under the investigated conditions) at larger network perturbations

or less drastic phenotypes than essentiality. When applied for

studying genetic interactions, FBA is a conservative method

compared to MiMBl, since the parameter used to define and

measure genetic interactions is also the objective of optimization,

i.e., growth. Within the metabolic network, the existence of several

optimal solutions theoretically satisfying maximum biomass

formation is often observed. In case of a single/double gene

deletion mutant where an alternative optimal pathway exists, FBA

will always find such an alternative solution, even though it may

not be biologically plausible due to regulatory constraints, and,

thereby may miss potential genetic interactions. On the other

hand, MiMBl will help in capturing more refined regulatory effects

where the loss of growth is a side effect of minimizing the flux

rerouting relative to the wild-type.

The subset of experimental genetic interactions involving non-

essential genes from the yeast metabolic model contains 2745

interactions (939 positive and 1806 negative) connecting 520 genes

(Text S1, Table S4). In order to assess the performance of the

different algorithms, we carried out a sensitivity versus precision

analysis. Precision was calculated as the fraction of experimentally

validated interactions among all predicted interactions, while the

sensitivity represents the fraction of the experimentally validated

interactions captured by the predictions (Text S1). A computa-

tional epistasis score cutoff (ecutoff) was used to call a particular

gene pair to be positively interacting (e.ecutoff), negatively

interacting (e,2ecutoff) or non-interacting (|e|,ecutoff) (Text
S1). The performance of all algorithms (MiMBl, FBA, lMoMA

and quadratic MoMA) is summarized as ROC (partial receiver

operating characteristic) curves for both, positive and negative

epistasis (Fig. 4 a, b and Fig. S10). The sensitivity and precision

of the FBA predictions obtained in this study are within the same

range as previously reported by Szappanos et al. [2]. MiMBl shows

less precision than FBA in case of both positive (,20% and

,30%, respectively) and negative interactions (,50% and ,60%,

respectively), but its sensitivity is considerably higher in both cases

(,9% vs ,4% for positive, Fig. 4a; ,5% vs ,3% for negative,

Fig. 4b), which reflects the conservative nature of FBA in

predicting genetic interactions. Notably, for the entire range of

genetic interaction cutoffs, MiMBl sensitivity and precision are

considerably higher than those of lMoMA (Fig. 4a, b). The same

trend was verified when the originally proposed quadratic MoMA

formulation was used (Fig. S10). As previously reported by

Szappanos and co-workers, lMoMA does not improve FBA

predictions. This observation further emphasizes that a proper

mathematical formulation of the biological principle (objective

function) has a major impact on the ability to interpret in vivo

observations.

We chose a strict interaction cutoff (|ecutoff| = 0.013) for further

analysis of the predicted interactions (Fig. S11). For this cutoff,

the correctly predicted genetic interactions map contains 142

interactions (73 positive and 69 negative) connecting 86 genes

(Fig. 4f). MiMBl not only captures all interactions, except one,

predicted by FBA, but also contributes with 48 additional

interactions (,34% of all accurate predictions). MiMBl predic-

tions thus span almost all of those from FBA (Fig. 4c), which we

attribute to the fact that many metabolites within the metabolic

model are directly contributing to the biomass formation.

Consequently, if the turnover of most metabolites is kept constant

upon gene deletions, the biomass turnover (growth) will also

remain constant. On the other hand, FBA is not able to capture

many genetic interactions found by MiMBl (Fig. 4c). These will

involve mutants where the loss of fitness upon gene deletion is

caused by the change from an in vivo well-tuned pathway to an

alternative pathway containing different metabolites or enzymes.

For many of such cases, there are alternative pathways that sustain

the same growth as the reference and FBA finds such solutions,

regardless of the magnitude of the turnover adjustment that is

required for the cell. Because of this feature, MiMBl is capable of

capturing a part of the regulatory constraints on the operation of

cellular metabolism, which lMoMA failed to capture (Fig. 4c).

The regulatory constraints imposed by MiMBl assume even

stronger relevance in the case of positive interactions, where

MiMBl exclusively accounts for almost 50% of all successfully

predicted interactions (Fig. 4f). In fact, FBA’s ability of predicting

positive interactions is limited, as the maximum predicted biomass

formation of a double deletion mutant would never be higher than

the highest among those predicted for the two single deletion

mutants. Thus, if a single deletion mutant has the maximum

predicted fitness of 1 (meaning that the fitness of the mutant is the

same as that of the wild-type), positive interactions involving the

deleted gene will be impossible to predict. As FBA is bound to find

the optimal solution that provides the highest growth, single

mutants with maximum fitness are much more often predicted

than the ones found by MiMBl, where minimal adjustment of the

metabolic network is preferred over maintaining maximum

growth. Indeed, MiMBl predicts decreased single mutant fitness

for twice more gene knockouts than FBA (,38.4 vs 18.1%).

Consequently, MiMBl also displayed an improved capacity to

predict both positive and negative epistasis involving the same

gene. More than 80% of the genes display this feature in vivo.

Interestingly, 30% of the genes involved in MiMBl predicted

epistasis interact both positively and negatively, while FBA predicts

that only 14% of the genes do so (Fig. 4f).

MiMBl predicts genetic interactions between distant
genes in the network

As metabolic networks are featured by several metabolites with

a high degree of connectivity, interactions occur between distant

pathways in the network. To assess MiMBl’s ability to predict such

pleiotropic effects, we calculated the network distance between

each pair of genes accurately predicted to interact (Text S1).

MiMBl captured interactions between genes that are significantly

more distant than in case of FBA (,40% more distant for negative

epistasis, p-value = 0.022; ,10% more distant for both positive

and negative epistasis, p-value = 0.089; Fig. 4d, e).

Predicting genetic interactions of isoenzymes
In a metabolic network reconstruction, a group of isoenzymes is

represented by a single reaction, which is associated with two or

more genes. Simulation-wise, such a reaction will be inactive only

when all of the corresponding isoenzyme-coding genes are deleted

and deletion of any single gene will not result in a loss of fitness.

Thus, in case of a reaction with two isoenzymes, when the deletion

of both isoenzyme-coding genes leads to decreased fitness in silico, a

negative interaction will be predicted. Our analysis captured

several of such cases, for example, the negative interactions

between SER3 and SER33, as well as between SAM1 and SAM2

(Fig. 4f). While this gene-deletion-centered approach allows

capturing interactions between isoenzyme-coding genes, it is not

suited for predicting interactions between two functionally

different genes where one (or both) of them have isoenzymes.

However, such interactions are often observed in vivo, since

isoenzymes do not always completely compensate each other’s

function due to differences in kinetic and/or regulatory charac-

teristics. Although these effects cannot be directly captured using

the currently available metabolic modeling tools, we suggest

evaluating the metabolic basis of genetic interactions between
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functionally different genes with isoenzymes by taking a reaction-

centered approach. For this purpose, flux through reactions

catalyzed by isoenzymes was constrained to zero when at least one

of the isoenzyme-coding genes was deleted. This way, five

additional genetic interactions involving isoenzymes were correctly

captured: a positive interaction between the isoenzyme group

TLK1 & TLK2 and the gene ARO1, as well as four negative

interactions involving the isoenzyme group ALD2-ALD6 and other

genes from the central carbon metabolism (Fig. 4f). These five

interactions are thus likely to result from flux rerouting caused by

the lack of compensation by the corresponding isoenzymes.

Combining MiMBl and FBA predictions for understanding
genetic interactions

Use of MiMBl not only allowed us to expand the range of genetic

interactions predicted by FBA, but also the combined use of these

two complementary algorithms enabled finding of relevant interac-

tions where only one or both simulation principles apply. For

example, the interaction between PGK2 and GDH2, exclusively

captured by MiMBl, is due to balancing of NADH and glutamate,

two of the most connected metabolites in the network. As there are

alternative pathways for fulfilling NADH and glutamate require-

ment (despite implying higher metabolic adjustments), FBA could

not capture this interaction. A similar effect is observed for the

negative interaction between isoenzymes SER3 and SER33. In the

absence of both genes, FBA predicts the needed supply of serine to

be totally fulfilled by rerouting the metabolic fluxes via the glyoxylate

shunt and threonine biosynthesis. On the other hand, MiMBl

predicts that the supply of serine will be shared between the two

alternative pathways, but the rescue cannot be complete, because the

corresponding metabolic adjustment cost overweighs the benefit of

increased growth. This prediction is in very good agreement with the

experimental verification that the double mutant growth is impaired

and can be restored by adding glycine to the medium, which is the

intermediate for serine synthesis via glyoxylate or threonine [27].

Overall, our results demonstrate that the use of optimization-

based algorithms that are stoichiometry representation indepen-

dent is fundamental for unambiguously linking modeling results

with biological interpretation. To this end, we report a new

method for formulating objective functions for metabolic modeling

– MiMBl. As a biological case study, we used MiMBl to gain

insights into the flux rewiring underlying genetic interactions

within the yeast metabolic network. The analysis showed that the

combined use of different objective functions is of primary

importance in order to achieve a more complete understanding

of the operating principles behind complex biological phenomena

such as genetic interactions. Indeed, the number of accurately

predicted genetic interactions was almost doubled owing to the use

of MiMBl, highlighting the impact of metabolic adjustment

constraints on the operation of perturbed metabolic networks. In

conclusion, MiMBl provides a framework for consistent mathe-

matical formulation of biological objective functions and thereby

facilitates unraveling of the genotype-phenotype relations in

metabolic networks.

Methods

Yeast genome-scale metabolic reconstructions
The susceptibility of the modeling results towards the stoichi-

ometry representation is inherent to the formulation of the

objective function; and it is independent of the choice of metabolic

network reconstruction. Two reconstructions were therefore

selected in this study based on their suitability for addressing the

biological principle in question. iFF708 [21] was the reconstruc-

tion of choice for illustrating the prediction of internal flux

distribution and metabolic engineering targets, as i) this recon-

struction has been successfully used for model guided metabolic

engineering [13,14] and, ii) when constrained with experimentally

measured substrate and product exchange rates [28] (Text S1),

iFF708 showed less flux variability at physiologically important

flux nodes as opposed to more recent reconstruction iAZ900 [22]

(Fig. S1). On the other hand, for studying large-scale genetic

interactions in yeast, we used iAZ900 (manually curated from

iMM904 [29]), as the maximum gene coverage overlap with the

experimental dataset was the main criterion. Simulation condi-

tions are provided in Text S1.

Normalized lMoMA
Normalized lMoMa was formulated as follows:

min
X

i

1

DvWT
i D

DvWT
i {vi D V i[N : vWT

i =0

s:t: S:v~0

vlb
i ƒviƒvub

i V i[N

Where N is the set of all reactions, M is the set of all intracellular

metabolites, S is the stoichiometric matrix and vi is the flux for

reaction i. WT stands for wild-type (or reference), vi
lb and vi

up are

the lower and upper bounds for the flux of reaction i.

Minimization of metabolites balance – MiMBl
Metabolite turnover is defined as the sum of all fluxes producing

(or consuming) it, multiplied by the stoichiometric coefficients:

tm~
X
i[Nm

am,ivi Vm[M,Nm5N

Nm is the subset of N producing or consuming metabolite m and

am,i is the stoichiometric coefficient of metabolite m in reaction i.

Note that am,i is always a positive number in the definition above,

irrespective of m being a substrate or a product.

Figure 4. Understanding genetic interactions by using MiMBl. a, b) The accuracy of genetic interaction predictions by FBA, lMoMA and
MiMBl was assessed by calculating the sensitivity and precision for positive (a) and negative (b) interactions. Sensitivity was calculated as the fraction
of experimentally observed interactions captured by the algorithm, while precision was estimated as the fraction of experimentally observed
interactions among the predicted interactions. c) Venn diagram showing the overlap of the correctly predicted interactions by FBA, MiMBl and
lMoMA. d, e) Distribution of the graph theoretical distances, within the yeast metabolic network, between the interacting genes captured by FBA (d)
and MiMBl (e). As MiMBl also captured the majority of FBA predicted interactions, only exclusive MiMBl interactions are shown in (e). f) The S.
cerevisiae genetic interactions network correctly predicted by MiMBl and/or FBA (FBA – dashed line, MiMBl – dotted line, both – full line). Positive and
negative interactions are distinguished by color (orange and blue, respectively) and the opacity of the edges is inversely proportional to the network
distance between the corresponding genes. Gray-filled nodes represent genes that display both positive and negative interactions. Gray areas
enclose isoenzymes where at least one of them was found to interact with other genes in the metabolic network.
doi:10.1371/journal.pcbi.1002758.g004
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MiMBl was formulated as two sequential linear programming

problems, as follows:

1st optimization:

min
X
m[M

DtWT
m {tmD

s: t:

S:v~0

tm~
X

i

am,ivi Vi[Nm,Nm5N : Sm,i=0

am,i:DSm,i D Vi[N, m[M

vlb
i ƒviƒvub

i Vi[N

vi§0 Vi[N

2nd optimization:

min
X

i

1

DvWT
i D

DvWT
i {vi D Vi[N : vWT

i =0

s: t S:v~0

vlb
i ƒviƒvub

i Vi[NX
m[M

DtWT
m {tmD~ min

X
m[M

DtWT
m {tmD

We note that MiMBl integrates reaction-to-metabolite turnover

mapping into the model formulation in terms of defining biological

objective functions and thereby making metabolite-usage a

determinant for the prediction of metabolic phenotypes. This

formulation is thus different from metabolite-centric approaches

that have been proposed for interpreting simulation results [30–

32].

Alternative stoichiometry representations
Alternative stoichiometry representations were obtained by

multiplying a given reaction (or a set of reactions) by a scalar h (or

a set of scalars). Consider reaction r : aY ,rYzaX ,rX?aZ,rZ, for

which an equivalent representation is given by:

haY ,rYzhaX ,rX?haZ,rZ Vhw0

where Y, X and Z represent the metabolites participating in

reaction r and aYr, aXr, aZr represent the corresponding stoichio-

metric coefficients. Note that when the stoichiometry of reaction r

is scaled by h, the corresponding flux value will be scaled by 1/h
for the same optimal solution. For illustrating the impact of linear

scaling of the reactions stoichiometry on the internal flux

distribution, the reaction RPI1 of iFF708 model was divided by

the scalar h. For illustrating the impact of using alternative

stoichiometry representations on the design of metabolic engi-

neering strategies, two biochemically equivalent stoichiometric

matrices were used: i) the as-published matrix from the yeast

model (S0) and ii) an equivalent matrix (S1) where the stoichio-

metric coefficients of the reactions SERxtO, PDC6, FUR1,

GAP1_21, PNP1_1, and CYSxtO were divided by 100, 100, 0.1,

0.01, 100 and 0.1, respectively. A third equivalent matrix (S2) was

generated by dividing the coefficients of a single reaction (PGK1)

by 0.1. The results of the comparison between S0 and S2 are

presented in Fig. S6.

Impact of scaling stoichiometry on the optimal solution –
Analytical evidence

The impact of scaling the constraints of a given linear

programming problem depends on whether such changes

guarantee the optimality conditions after scaling. Consider the

problem:

min
X
i[N

civi

s:t: S:v~b

vi§0

Where ci is the cost coefficient of variable vi in the objective

function. Here, a linear combination of non-normalized fluxes is

used in the objective function, similarly to e.g. minimization of

intracellular flux and lMoMA. Assuming that B is an optimal basis

matrix for the problem, the following optimization condition is

satisfied:

cj~cj{cB
0B{1Sj

cj§0, Vj[N

where j is the index of variable v in matrix S, cj is the reduced cost

of the variable vj , cj is the objective function coefficient of vj , cB is

the vector containing the objective coefficients of basic variables

and Sj is the jth column of matrix S [33]. Linear scaling the

problem by the matrix H will result in the following reduced cost

for each variable:

cjH~cj{cB
0 BHBð Þ{1hjjSj

Where H is a n|n positive diagonal matrix (scaling matrix) and

hjj is the scaling factor for the jth column of matrix S. In the cases

of entries hjj=1 the corresponding columns of S are accordingly

scaled. Analogously, HB is the scaling matrix corresponding to the

basic variables.

Unless all entries of H are identical,

A h [ <z : cj{cB
0 BHBð Þ{1hjjSjƒ0 Vj[N

Therefore the optimality condition is not guaranteed.

Corollary 1: When all (diagonal) entries of H are identical

(uniform scaling matrix), and therefore equal to hjj , the optimality

condition is simplified to

cjH~cj{cB
0HB

{1B{1hjjSj

where HB
{1~

1

hjj

I

cjH~cj{cB
0B{1Sj~cj

cj§0[cjH§0

The same optimality condition can thus be guaranteed only when

the matrix S is uniformly scaled. Note that due to the nature of the
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biological problem, the genuine representation of S might not be

known, thereby H cannot be guaranteed to be a uniform scaling

matrix. More importantly, for metabolic modeling purposes

(where flux units and ranges are problem dependent), it is

nevertheless undesirable that the solution is sensitive to non-

uniform scaling and thus context dependent.

Corollary 2: For any positive diagonal scaling matrix H, the

same optimality condition is still guaranteed if the cost coefficients

vector Cð Þ is also scaled by H. However, the choice of the

appropriate H for formulating a biologically meaningful problem

will require existence of a unique representation of S for any given

network, which is not possible due to subjective nature of

stoichiometry representation.

Now consider the following MiMBl-like formulated problem:

min
X
m[M

cmtm

s:t: S:v~b

tm§0

Where, cm is cost coefficient of variable tm in the objective

function. The new problem biologically corresponds to the

previous one, after mapping the flux space into metabolite space.

We term it as a MiMBl-like problem formulation.

As tm~
X
i[Nm

am,ivi Vm[M,Nm5N

Recall that am,i is the stoichiometric coefficient of metabolite m in

reaction i. The objective function can be re-written as function of

vi:

min
X
m[M

cm

X
i[Nm

am,ivi

 ! !
Vm[M,Nm5N

~

min
X
i[N

X
m[M

cmam,ið Þ:vi

 !

Therefore, the objective function coefficient of each vi is a function

of the stoichiometric coefficients am,i: ci~
P

m[M

cmam,i:

Similarly to the previous problem, the following optimality

condition is satisfied, so v is an optimal solution.

cj~cj{cB
0B{1Sj

cj§0 Vj[N

Scaling the optimality condition will result in:

cjH~cjhjj{cB
0HB BHBð Þ{1hjjSj

~cjhjj{cB
0HBHB

{1B{1hjjSj

~hjj
: cj{cB

0B{1Sj

� �
cj{cB

0B{1Sj

� �
§0 and hjjw0

cjH§0

Unlike the previous situation (sum of fluxes in the objective

function), using a MiMBl-like problem formulation guarantees

that the optimality condition is always satisfied, independently of

the stoichiometry representation.

Sensitivity analysis
The sensitivity of MiMBl and lMoMA towards the use of FBA

alternative optima for wild-type flux distribution was evaluated by

performing single gene deletion simulations while using 500

different flux distributions corresponding to alternative optima of

the same FBA solution. FBA alternative optimal solutions were

obtained following a Mixed Integer Linear Programming (MILP)

routine similar to the one suggested by Lee et al. [34]. Flux

variability analysis of the flux distributions obtained with MiMBl

and lMoMA were performed according to the procedure

suggested by Mahadevan et al. [26]: maximizing and minimizing

internal fluxes after constraining the objective function to its

optimal value. In case of MiMBl, this implies adding an additional

constraint of the minimum Manhattan distance between the wild-

type and the mutant metabolite turnovers. In case of lMoMA, the

Manhattan distance between the mutant and the wild-type fluxes

will have an upper bound. Growth is uniquely predicted if

vmin
Growth~vmax

Growth. Cases of vmin
Growth~vmax

Growth = 0 were also treated as

vmin
Growth

�
vmax

Growth = 1, solely for the purpose of visualization (Fig. 3d).

Supporting Information

Figure S1 Comparing the variability of predicted internal fluxes

of glycolysis and pentose phosphate pathway between the models

iFF708 and iAZ900. Metabolites uptake and production rates, as

well as growth from [28] were used to constraint both models and

a flux variability analysis as suggested by [26] was performed for

the represented fluxes from a) glycolysis and pentose b) phosphate

pathway. Flux names are represented as in iFF708 [21].

(TIF)

Figure S2 Profiles obtained for the objective function value

(minimization of overall intracellular flux) using alternative

stoichiometry representations of S. cerevisiae genome-scale model

iFF708 [21]. This analysis is complementary to and based on the

same simulation constraints as used for Fig. 1 in the main text. As

the contribution of each flux to the objective function changes

based on the corresponding stoichiometry representation, different

situations could be described, leading either to the same (a, b) or

distinct (c, d) optimal solutions. To illustrate these different

situations, four reactions within the model were linearly scaled one

at a time by multiplying by a scalar h as described in Methods. a)

Linear scaling of the reaction FBP1. As FBP1 carries no flux under

the simulated conditions, the scaling of this reaction does not affect

the objective function value. b) Linear scaling of the reaction

RPE1. For the range of h tested, the objective function value

perfectly correlated with the scaling factor of the reaction RPE1,

which indicates that all obtained solutions are in fact the same

optimal solution (or alternative optimal solutions, depending on

the model complexity). This profile means that there is no pathway

alternative to RPE1 that can become part of the optimal solution.

c) Linear scaling of the reaction RPI1. For the range of tested h, at

least two slopes are observed when correlating the objective

function value with 1/h, indicating that at least two different

optimal solutions were found for the same problem. d) Linear

scaling of the reaction NDI1. Similarly to that of RPI1, scaling of

NDI1 leads to different optimal solutions. However, in this case,

the objective function value stabilizes after a given h, which means

that this flux no longer influences the optimization. Such profile
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suggests that the optimal solution found after the given value of h
does no longer involve NID1, but an alternative pathway, which

became preferred for minimizing the objective function.

(TIF)

Figure S3 A toy-model illustrating how, and why, alternative

stoichiometry representations influence simulation of minimization

of metabolic adjustment by using normalized lMoMA –

normlMoMA. a) Toy-model: R1 to R7 and A to D represent

reactions and metabolites, respectively. In the wild-type, or

reference, flux goes from A to D via R5. R6 and R2–R3–R4 are

two alternative pathways for flux re-distribution after deletion of

R5. b) Flux through reactions R2 (full symbols) and R6 (open

symbols) obtained after simulation with normlMoMA by using

alternative representations of reaction R6 (given by different hR6,

Methods). c) Formulation of normlMoMA objective function

(Methods). d) Optimal objective function value (distance)

obtained for minimization of metabolic adjustment as function

of hR6.

(TIF)

Figure S4 Impact of stoichiometry representation on the design

of metabolic engineering strategies depending on the nature of the

objective function formulation – MiMBL versus lMoMA. Shown is

the comparison of predicted succinate and vanillin-glucoside yields

for triple gene knockout mutants obtained with two alternative

stoichiometric matrices (S0 and S1, Methods). Number of mutants

diverging in their lMoMA-predicted a) succinate and b) vanillin-

glucoside yields for the two alternative representations of

stoichiometry. The x-axis represents the percentage of deviation

of product formation by the mutants relative to S0. c) Comparison

of ranks of lMoMA-predicted metabolic engineering strategies for

improving succinate and vanillin-glucoside production, obtained

by using S0 and S1. d) Comparison of ranks of MiMBL-predicted

metabolic engineering strategies for improving succinate and

vanillin-glucoside production, obtained by using S0 and S1.

(TIF)

Figure S5 Stoichiometry representation impacts the design of

metabolic engineering strategies for improving succinate produc-

tion in S. cerevisiae depending on the nature of the objective

function formulation. Shown is the comparison of predicted

succinate yield for a) single, b) double and c) triple gene knockout

mutants obtained with two alternative stoichiometric matrices (S0

and S1, Methods). The number of mutants diverging in their

lMoMA-predicted succinate yield for the two alternative repre-

sentations of stoichiometry is represented on the y-axis, while the

percentage of deviation of product formation by the mutants

relative to S0 is represented on the x-axis. d–f) Comparison of

ranks of lMoMA-predicted metabolic engineering strategies for

improving succinate production obtained by using S0 and S1 for d)

single, e) double and f) triple gene knockout mutants.

(TIF)

Figure S6 Stoichiometry representation impacts the design of

metabolic engineering strategies for improving vanillin-glucoside

production in S. cerevisiae depending on the nature of the objective

function formulation. Shown is the comparison of predicted

vanillin-glucoside yield for a) single, b) double and c) triple gene

knockout mutants obtained with two alternative stoichiometric

matrices (S0 and S1, Methods). The number of mutants diverging

in their lMoMA-predicted vanillin-glucoside yield for the two

alternative representations of stoichiometry is represented on the

y-axis, while the percentage of deviation of product formation by

the mutants relative to S0 is represented on the x-axis. d–f)
Comparison of ranks of lMoMA-predicted metabolic engineering

strategies for improving vanillin-glucoside production obtained by

using S0 and S1 for d) single, e) double and f) triple gene knockout

mutants.

(TIF)

Figure S7 Stoichiometry representation impacts the design of

metabolic engineering strategies for improving succinate and

vanillin-glucoside yields in S. cerevisiae depending on the nature of

the objective function formulation. a–f) Number of mutants

diverging in their lMoMA-predicted a–c) succinate and d–f)

vanillin-glucoside yields for two alternative representations of

stoichiometry, S0 and S2 (Methods). Results for a,d) single, b,e)

double and c,f) triple gene knockout mutants are presented. g–l)
Comparison of ranks of lMoMA-predicted metabolic engineering

strategies for improving g–i) succinate and j–l) vanillin-glucoside

production obtained by using S0 and S2. Results for g,j) single, h,k)

double and i,l) triple gene knockout mutants are presented.

(TIF)

Figure S8 Alternative optima and sensitivity to reference flux

distribution. a) The left side of the panel illustrates the variability

due to possible uncertainty in the reference flux distribution, for

example, as obtained by FBA simulations. The right hand side of

the panel illustrates variability in the simulation result owing to the

possibility of alternative optimal solutions of the MiMBL linear

programming problem. Deletion of Gene 1 illustrates a case where

a unique optimal solution is found, while deletion of Gene 2

depicts a case of alternative optima. b) Flux variability analysis to

assess the existence of the alternative optimal solutions for a given

reference flux distribution (Methods). Shown are the flux

variability ranges of alanine transport and flux through phospho-

glucomutase (PGM1) after deletion of YBL045C and YOR128C,

respectively. PGM1 represents a case where the 2nd optimization

step of MiMBL contributes to reducing of flux variability. The

corresponding results for lMoMA are presented in Fig. S9. c) Flux

variability analysis for growth flux following single/double gene

deletions. MiMBL yielded unique growth prediction for single and

double gene deletion mutants. Only double gene deletions relevant

for the genetic interactions case study (main text) were simulated.

(TIF)

Figure S9 Alternative optima and sensitivity to reference flux

distribution: lMoMA. a) Sensitivity of MiMBL towards the use of

different reference flux distributions (Methods). Shown are

histograms of the simulated growth (vGrowth/vWT
Growth) of the

mutants lacking YLR377C or YGL148W obtained with MiMBL

across 500 simulations using alternatively optimal FBA solutions.

Gray arrows mark the minimum and the maximum ratio. b) Flux

variability analysis to assess alternative optimal solutions for a

given reference flux distribution (Methods). Shown are the flux

variability ranges of alanine transport and flux through phospho-

glucomutase (PGM1) after deletion of YBL045C and YOR128C,

respectively. PGM1 represents a case where the 2nd optimization

step of MiMBL contributes to reducing of flux variability.

(TIF)

Figure S10 ROC (partial receiver operating characteristic)

curves obtained for predicting genetic interactions with MoMA.

The ROC curves for the remaining algorithms were kept for

reference. Sensitivity reflects the fraction of experimentally

validated interactions captured by the algorithm while precision

is experimentally validated interactions among all predicted

interactions. a) Positive interactions. b) Negative interactions.

(TIF)

Figure S11 Sensitivity and precision for predicted genetic

interactions versus epistasis score cutoff for FBA and MiMBL.
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The top plots present the sensitivity for positive (a) and negative (b)

interactions for FBA and MiMBL. The epistasis score cutoff of

|0.13| is represented by a dashed line. The bottom plots present

the precision for positive (c) and negative (d) interactions for FBA

and MiMBL. The epistasis score cutoff of |0.13| is represented by

a dashed line.

(TIF)

Table S1 Number of lMoMA-predicted lethal gene/reaction

knockouts in S. cerevisiae that differ between alternative represen-

tations of stoichiometry (S1 and S2), relative to S0.

(DOCX)

Table S2 lMoMA-predicted epistatic interactions within S.

cerevisiae genome-scale metabolic model.

(DOCX)

Table S3 MiMBL-predicted epistatic interactions within S.

cerevisiae genome-scale metabolic model.

(DOCX)

Table S4 All significant genetic interactions among non-essential

genes from Szappanos et al. involving genes contained in iAZ900

model included in the study.

(XLSX)

Text S1 Supplementary methods. i) Yeast genome-scale meta-

bolic models and simulation conditions; ii) Flux Balance Analysis;

iii) Minimization of overall intracellular flux; iv) Minimization of

metabolic adjustment – lMoMA; v) Genetic interactions – epistasis

score; vi) Metabolic network distance.

(DOCX)

Text S2 Supplementary notes. i) Toy-model; ii) normlMoMA;

iii) Impact of scaling stoichiometry on finding the optimal solution

for metabolic flux distributions using FBA-like objective functions

– Analytical evidence.

(DOCX)
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