119 research outputs found

    Understanding the Role of Social, Technology, and Physical Infrastructures in Smart Communities: The Case of Rural Areas in the US

    Get PDF
    Smartness is a concept that frames a great variety of initiatives, particularly in the urban context. Smart cities are expected to be more resilient, more sustainable, and have highly engaged citizens, among many other expected outcomes. Given the focus on urban settings, many examples of smartness take for granted that the physical and technological infrastructures exist and are available to the majority of residents. For instance, Internet access, a reliable transportation system, or electrical power are rarely questioned or considered as a problem to be solved before becoming smart. In addition, formal education and technical skills are also expected as part of the social infrastructure of a city. However, when smartness goes beyond the urban settings, the availability and combination of these different infrastructures also differ. Based on a study of a rural community in the US, this paper begins to fill a gap in what is known about smartness in rural communities by analyzing how the physical, technology and social infrastructures in rural areas are different from urban settings, but still generate unique opportunities for building smart communities. Our results indicate that the unique conditions of rural communities create atypical strengths for becoming smarter

    Automated Reminders to Promote Radon Testing in a Lung Cancer Case Control Study

    Get PDF
    One of the four pilot projects of the Lung Cancer Initiative sponsored by the Department of Defense measures radon levels in the participants homes. Radon exposure is the second leading cause of Lung Cancer. The case-control study has a targeted accrual of 1800 with a case-control ratio of 1:4. The long-term radon kits remain in the home for 90 days and the participants are asked to mail the test kit to the company for analysis. In order to maximize the test kit return rate, reminder calls to the participants occurred 90 days after the home visit

    Chronic fetal hypoxia disrupts the peri-conceptual environment in next-generation adult female rats.

    Get PDF
    KEY POINTS: Exposure to chronic hypoxia during gestation influences long-term health and development, including reproductive capacity, across generations. If the peri-conceptual environment in the developing oviduct is affected by gestational hypoxia, then this could have implications for later fertility and the health of future generations. In the present study, we show that the oviducts of female rats exposed to chronic hypoxia in utero have reduced telomere length, decreased mitochondrial DNA biogenesis and increased oxidative stress The results of the present study show that exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in early adulthood and they help us understand how exposure to hypoxia during development could influence reproductive health across generations. ABSTRACT: Exposure to chronic hypoxia during fetal development has important effects on immediate and long-term outcomes in offspring. Adverse impacts in adult offspring include impairment of cardiovascular function, metabolic derangement and accelerated ovarian ageing. However, it is not known whether other aspects of the female reproductive system may be similarly affected. In the present study, we examined the impact of chronic gestational hypoxia on the developing oviduct. Wistar rat dams were randomized to either normoxia (21%) or hypoxia (13%) from day 6 post-mating until delivery. Post-delivery female offspring were maintained in normoxia until 4 months of age. Oviductal gene expression was assayed at the RNA (quantitative RT-PCR) and protein (western blotting) levels. Oviductal telomere length was assayed using Southern blotting. Oviductal telomere length was reduced in the gestational hypoxia-exposed animals compared to normoxic controls (P < 0.01). This was associated with a specific post-transcriptional reduction in the KU70 subunit of DNA-pk in the gestational hypoxia-exposed group (P < 0.05). Gestational hypoxia-exposed oviducts also showed evidence of decreased mitochondrial DNA biogenesis, reduced mtDNA copy number (P < 0.05) and reduced gene expression of Tfam (P < 0.05) and Pgc1α (P < 0.05). In the hypoxia-exposed oviducts, there was upregulation of mitochondrial-specific anti-oxidant defence enzymes (MnSOD; P < 0.01). Exposure to chronic gestational hypoxia leads to accelerated ageing of the oviduct in adulthood. The oviduct plays a central role in early development as the site of gamete transport, syngamy, and early development; hence, accelerated ageing of the oviductal environment could have important implications for fertility and the health of future generations

    LSDV-Vectored SARS-CoV-2 S and N Vaccine Protects against Severe Clinical Disease in Hamsters

    Get PDF
    The SARS-CoV-2 pandemic demonstrated the need for potent and broad-spectrum vaccines. This study reports the development and testing of a lumpy skin disease virus (LSDV)-vectored vaccine against SARS-CoV-2, utilizing stabilized spike and conserved nucleocapsid proteins as antigens to develop robust immunogenicity. Construction of the vaccine (LSDV-SARS2-S,N) was confirmed by polymerase chain reaction (PCR) amplification and sequencing. In vitro characterization confirmed that cells infected with LSDV-SARS2-S,N expressed SARS-CoV-2 spike and nucleocapsid protein. In BALB/c mice, the vaccine elicited high magnitude IFN-&gamma; ELISpot responses (spike: 2808 SFU/106 splenocytes) and neutralizing antibodies (ID50 = 6552). Testing in hamsters, which emulate human COVID-19 disease progression, showed the development of high titers of neutralizing antibodies against the Wuhan and Delta SARS-CoV-2 variants (Wuhan ID50 = 2905; Delta ID50 = 4648). Additionally, hamsters vaccinated with LSDV-SARS2-S,N displayed significantly less weight loss, lung damage, and reduced viral RNA copies following SARS-CoV-2 infection with the Delta variant as compared to controls, demonstrating protection against disease. These data demonstrate that LSDV-vectored vaccines display promise as an effective SARS-CoV-2 vaccine and as a potential vaccine platform for communicable diseases in humans and animals. Further efficacy testing and immune response analysis, particularly in non-human primates, are warranted

    Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants

    Get PDF
    BACKGROUND During normal human kidney development, nephrogenesis (the formation of nephrons) is complete by term birth, with the majority of nephrons formed late in gestation. The aim of this study was to morphologically examine nephrogenesis in fetal human kidneys from 20 to 41weeks of gestation. METHODS Kidney samples were obtained at autopsy from 71 infants that died acutely in utero or within 24h after birth. Using image analysis, nephrogenic zone width, the number of glomerular generations, renal corpuscle cross-sectional area and the cellular composition of glomeruli were examined. Kidneys from female and male infants were analysed separately. FINDINGS The number of glomerular generations formed within the fetal kidneys was directly proportional to gestational age, body weight and kidney weight, with variability between individuals in the ultimate number of generations (8 to 12) and in the timing of the cessation of nephrogenesis (still ongoing at 37weeks gestation in one infant). There was a slight but significant (r2=0.30, P=0.001) increase in renal corpuscle cross-sectional area from mid gestation to term in females, but this was not evident in males. The proportions of podocytes, endothelial and non-epithelial cells within mature glomeruli were stable throughout gestation. INTERPRETATION These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age.This study was supported by funding from the National Health and Medical Research Council (NHMRC) (1011136) of Australia and National Institutes of Health (NIH) USA grant 3U01DK094526-04S1 (PI A P McMahon). Author Danica Ryan was the recipient of the Biomedicine Discovery Scholarship from Monash University and author Megan R. Sutherland was supported by a NHMRC CJ Martin Fellowship

    Reshaping the preterm heart: shifting cardiac renin-angiotensin system towards cardioprotection in rats exposed to neonatal high-oxygen stress

    Get PDF
    Background: Approximately 10% of infants are born preterm. Preterm birth leads to short and long-term changes in cardiac shape and function. By using a rat model of neonatal high-oxygen (80%O2) exposure, mimicking the premature hyperoxic transition to the extrauterine environment, we revealed a major role of the renin-angiotensin system peptide Angio II (angiotensin II) and its receptor AT1 (angiotensin receptor type 1) on neonatal O2-induced cardiomyopathy. Here, we tested whether treatment with either orally active compounds of the peptides Angio-(1–7) or alamandine included in cyclodextrin could prevent postnatal cardiac remodeling and the programming of cardiomyopathy induced by neonatal high-O2 exposure. Methods: Sprague-Dawley pups were exposed to room air or 80% O2 from postnatal day 3 (P3) to P10. Neonatal rats were treated orally from P3 to P10 and assessed at P10 and P28. Left ventricular (LV) shapes were characterized by tridimensional computational atlases of ultrasound images in addition to histomorphometry. Results: At P10, high O2-exposed rats presented a smaller, globular and hypertrophied LV shape versus controls. Treatment with cyclodextrin–Angio-(1–7) significantly improved LV function in the O2-exposed neonatal rats and slightly changed LV shape. Cyclodextrin-alamandine and cyclodextrin–Angio-(1–7) treatments similarly reduced hypertrophy at P10 as well as LV remodeling and dysfunction at P28. Both treatments upregulated cardiac angiotensin-converting enzyme 2 in O2-exposed rats at P10 and P28. Conclusions: Our findings demonstrate LV remodeling changes induced by O2-stress and the potential benefits of treatments targeting the cardioprotective renin-angiotensin system axis, supporting the neonatal period as an important window for interventions aiming at preventing cardiomyopathy in people born preterm

    Setting the agenda for social science research on the human microbiome

    Get PDF
    The human microbiome is an important emergent area of cross, multi and transdisciplinary study. The complexity of this topic leads to conflicting narratives and regulatory challenges. It raises questions about the benefits of its commercialisation and drives debates about alternative models for engaging with its publics, patients and other potential beneficiaries. The social sciences and the humanities have begun to explore the microbiome as an object of empirical study and as an opportunity for theoretical innovation. They can play an important role in facilitating the development of research that is socially relevant, that incorporates cultural norms and expectations around microbes and that investigates how social and biological lives intersect. This is a propitious moment to establish lines of collaboration in the study of the microbiome that incorporate the concerns and capabilities of the social sciences and the humanities together with those of the natural sciences and relevant stakeholders outside academia. This paper presents an agenda for the engagement of the social sciences with microbiome research and its implications for public policy and social change. Our methods were informed by existing multidisciplinary science-policy agenda-setting exercises. We recruited 36 academics and stakeholders and asked them to produce a list of important questions about the microbiome that were in need of further social science research. We refined this initial list into an agenda of 32 questions and organised them into eight themes that both complement and extend existing research trajectories. This agenda was further developed through a structured workshop where 21 of our participants refined the agenda and reflected on the challenges and the limitations of the exercise itself. The agenda identifies the need for research that addresses the implications of the human microbiome for human health, public health, public and private sector research and notions of self and identity. It also suggests new lines of research sensitive to the complexity and heterogeneity of human–microbiome relations, and how these intersect with questions of environmental governance, social and spatial inequality and public engagement with science

    2017 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1004/thumbnail.jp
    • 

    corecore