2,536 research outputs found

    Equilibrium properties of the mixed state in superconducting niobium in a transverse magnetic field: Experiment and theoretical model

    Full text link
    Equilibrium magnetic properties of the mixed state in type-II superconductors were measured with high purity bulk and film niobium samples in parallel and perpendicular magnetic fields using dc magnetometry and scanning Hall-probe microscopy. Equilibrium magnetization data for the perpendicular geometry were obtained for the first time. It was found that none of the existing theories is consistent with these new data. To address this problem, a theoretical model is developed and experimentally validated. The new model describes the mixed state in an averaged limit, i.e. %without detailing the samples' magnetic structure and therefore ignoring interactions between vortices. It is quantitatively consistent with the data obtained in a perpendicular field and provides new insights on properties of vortices. % and the entire mixed state. At low values of the Ginzburg-Landau parameter, the model converts to that of Peierls and London for the intermediate state in type-I superconductors. It is shown that description of the vortex matter in superconductors in terms of a 2D gas is more appropriate than the frequently used crystal- and glass-like scenarios.Comment: 8 pages, 9 figure

    Steady state of atoms in a resonant field with elliptical polarization

    Full text link
    We present a complete set of analytical and invariant expressions for the steady-state density matrix of atoms in a resonant radiation field with arbitrary intensity and polarization. The field drives the closed dipole transition with arbitrary values of the angular momenta JgJ_{g} and JeJ_{e} of the ground and excited state. The steady-state density matrix is expressed in terms of spherical harmonics of a complex direction given by the field polarization vector. The generalization to the case of broad-band radiation is given. We indicate various applications of these results.Comment: revtex, 26 pages, including 3 eps figures; PRA accepted for publication;v2 three typos are fixe

    Clinical outcomes of different implant types in mandibular bar-retained overdentures: a retrospective analysis with up to 20 years follow-up.

    Get PDF
    PURPOSE To determine the clinical and radiological outcomes of hybrid-design- (HD) and bone-level (BL) implants for bar-retained mandibular implant-overdentures (IODs). METHODS For this retrospective study, edentulous patients who had received maxillary complete dentures and mandibular bar-retained IODs were invited for a follow-up assessment. Implant survival, implant success and health of peri-implant tissues were assessed on an implant level-based analysis. Patient-based parameters served to identify risk factors for peri-implant bone loss, presence of peri-implantitis and success. RESULTS Eighty patients (median age 72.72 [67.03; 78.81] years, 46 females) with 180 implants (median follow-up 12.01 [10.82; 21.04] years) were assessed. There was no difference concerning the rate of implant failure (p = 0.26), or peri-implantitis (p = 0.97) between HD and BL implants. Solely in one study group, there was the presence of peri-implant pus. Implant success was higher in BL implants with one group being notably higher than the comparing groups (p = 0.045). For bone loss, a width of keratinized mucosa (KM) ≤ 1 mm (p = 0.0006) and the presence of xerostomia (p = 0.09) were identified as risk factors. Smoking (p = 0.013) and a higher body mass index (BMI) (p = 0.03) were a risk factor for peri-implantitis. As risk factors for reduced implant success, a small width of KM (p = 0.003) and the presence of xerostomia (p = 0.007) were identified. CONCLUSIONS For mandibular bar-retained IODs, both BL and HD implants are mostly successful. A minimum of 1 mm KM around implants and normal salivary flow are relevant factors for implant success and stable peri-implant bone levels. Smoking and a high BMI are potential risk factors for peri-implantitis

    Aperiodic dynamical decoupling sequences in presence of pulse errors

    Full text link
    Dynamical decoupling (DD) is a promising tool for preserving the quantum states of qubits. However, small imperfections in the control pulses can seriously affect the fidelity of decoupling, and qualitatively change the evolution of the controlled system at long times. Using both analytical and numerical tools, we theoretically investigate the effect of the pulse errors accumulation for two aperiodic DD sequences, the Uhrig's DD UDD) protocol [G. S. Uhrig, Phys. Rev. Lett. {\bf 98}, 100504 (2007)], and the Quadratic DD (QDD) protocol [J. R. West, B. H. Fong and D. A. Lidar, Phys. Rev. Lett {\bf 104}, 130501 (2010)]. We consider the implementation of these sequences using the electron spins of phosphorus donors in silicon, where DD sequences are applied to suppress dephasing of the donor spins. The dependence of the decoupling fidelity on different initial states of the spins is the focus of our study. We investigate in detail the initial drop in the DD fidelity, and its long-term saturation. We also demonstrate that by applying the control pulses along different directions, the performance of QDD protocols can be noticeably improved, and explain the reason of such an improvement. Our results can be useful for future implementations of the aperiodic decoupling protocols, and for better understanding of the impact of errors on quantum control of spins.Comment: updated reference

    Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

    Get PDF
    The competition between collective quantum phases in materials with strongly correlated electrons depends sensitively on the dimensionality of the electron system, which is difficult to control by standard solid-state chemistry. We have fabricated superlattices of the paramagnetic metal LaNiO3 and the wide-gap insulator LaAlO3 with atomically precise layer sequences. Using optical ellipsometry and low-energy muon spin rotation, superlattices with LaNiO3 as thin as two unit cells are shown to undergo a sequence of collective metalinsulator and antiferromagnetic transitions as a function of decreasing temperature, whereas samples with thicker LaNiO3 layers remain metallic and paramagnetic at all temperatures. Metal-oxide superlattices thus allow control of the dimensionality and collective phase behavior of correlated-electron systems

    The Quantum Adiabatic Approximation and the Geometric Phase

    Get PDF
    A precise definition of an adiabaticity parameter ν\nu of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=∑ℓU(ℓ)(τ)U(\tau)=\sum_\ell U^{(\ell)}(\tau) with U(ℓ)(τ)U^{(\ell)}(\tau) being at least of the order νℓ\nu^\ell. In particular U(0)(τ)U^{(0)}(\tau) corresponds to the adiabatic approximation and yields Berry's adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ1/\tau-expansion of U(τ)U(\tau). It is also shown that the non-adiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. Some related issues concerning the geometric phase are also discussed.Comment: uuencoded LaTeX file, 19 page

    Non-adiabatically detecting the geometric phase of the macroscopic quantum state with symmetric SQUID

    Full text link
    We give a simple way to detect the geometric phase shift and the conditional geometric phase shift with Josephson junction system. Comparing with the previous work(Falcl G, Fazio R, Palma G.M., Siewert J and Verdal V, {\it Nature} {\bf 407}, 355(2000)), our scheme has two advantages. We use the non-adiabatic operation, thus the detection is less affected by the decoherence. Also, we take the time evolution on zero dynamic phase loop, we need not take any extra operation to cancel the dynamic phase.Comment: 8 pages, 4 figure

    Magnetism, superconductivity and coupling in cuprate heterostructures probed by low-energy muon-spin rotation

    Get PDF
    We present a low-energy muon-spin-rotation study of the magnetic and superconducting properties of YBa2Cu3O7/PrBa2Cu3O7 trilayer and bilayer heterostructures. By determining the magnetic-field profiles throughout these structures we show that a finite superfluid density can be induced in otherwise semiconducting PrBa2Cu3O7 layers when juxtaposed to YBa2Cu3O7 "electrodes" while the intrinsic antiferromagnetic order is unaffected.Comment: 10 pages, 9 figures; figure 9 corrected in version
    • …
    corecore