123 research outputs found
Comparison of the accuracy and precision of pharmacokinetic equations to predict free meropenem concentrations in critically ill patients
Population pharmacokinetic analyses can be applied to predict optimized dosages for individual patients. The aim of this study was to compare the prediction performance of the published population pharmacokinetic models for meropenem in critically ill patients. We coded the published population pharmacokinetic models with covariate relationships into dosing software to predict unbound meropenem concentrations measured in a separate cohort of critically ill patients. The agreements between the observed and predicted concentrations were evaluated with Bland-Altman plots. The absolute and relative bias and precision of the models were determined. The clinical implications of the results were evaluated according to whether dose adjustments were required from the predictions to achieve a meropenem concentration of >2 mg/liter throughout the dosing interval. A total of 157 free meropenem concentrations from 56 patients were analyzed. Eight published population pharmacokinetic models were compared. The models showed an absolute bias in predicting the unbound meropenem concentrations from a mean percent difference (95% confidence interval [CI]) of -108.5% (-119.9% to -97.3%) to 19.9% (7.3% to 32.7%), while absolute precision ranged from -249.1% (-263.4% to -234.8%) to 31.9% (17.6% to 46.2%) and -178.9% (-196.9% to -160.9%) to 175.0% (157.0% to 193.0%). A dose change was required in 44% to 64% of the concentration results. Seven of the eight equations evaluated underpredicted free meropenem concentrations. In conclusion, the overall accuracy of these models supports their inclusion in dosing software and application for individualizing meropenem doses in critically ill patients to increase the likelihood of achievement of optimal antibiotic exposures
A new ghost cell/level set method for moving boundary problems:application to tumor growth
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristicsâan effect observed in real tumor growth
Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics
International audienceThis chapter proposes a framework for dealing with two problems related to the analysis of shapes: the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and ZolĂ©sio [8], we consider the characteristic functions of the subsets of â2 and their distance functions. The L 2 norm of the difference of characteristic functions and the Lâ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular that induced by the well-known Hausdorff distance. Because of practical considerations arising from the fact that we deal with image shapes defined on finite grids of pixels, we restrict our attention to subsets of â2 of positive reach in the sense of Federer [12], with smooth boundaries of bounded curvature. For this particular set of shapes we show that the three previous topologies are equivalent. The next problem we consider is that of warping a shape onto another by infinitesimal gradient descent, minimizing the corresponding distance. Because the distance function involves an inf, it is not differentiable with respect to the shape. We propose a family of smooth approximations of the distance function which are continuous with respect to the Hausdorff topology, and hence with respect to the other two topologies. We compute the corresponding GĂąteaux derivatives. They define deformation flows that can be used to warp a shape onto another by solving an initial value problem. We show several examples of this warping and prove properties of our approximations that relate to the existence of local minima. We then use this tool to produce computational de.nitions of the empirical mean and covariance of a set of shape examples. They yield an analog of the notion of principal modes of variation. We illustrate them on a variety of examples
Long-Term Outcomes with Subcutaneous C1-Inhibitor Replacement Therapy for Prevention of Hereditary Angioedema Attacks
Background: For the prevention of attacks of hereditary angioedema (HAE), the efficacy and safety of subcutaneous human C1-esterase inhibitor (C1-INH[SC]; HAEGARDA, CSL Behring) was established in the 16-week Clinical Study for Optimal Management of Preventing Angioedema with Low-Volume Subcutaneous C1-Inhibitor Replacement Therapy (COMPACT). Objective: To assess the long-term safety, occurrence of angioedema attacks, and use of rescue medication with C1-INH(SC). Methods: Open-label, randomized, parallel-arm extension of COMPACT across 11 countries. Patients with frequent angioedema attacks, either study treatment-naive or who had completed COMPACT, were randomly assigned (1:1) to 40 IU/kg or 60 IU/kg C1-INH(SC) twice per week, with conditional uptitration to optimize prophylaxis (ClinicalTrials.gov registration no. NCT02316353). Results: A total of 126 patients with a monthly attack rate of 4.3 in 3 months before entry in COMPACT were enrolled and treated for a mean of 1.5 years; 44 patients (34.9%) had more than 2 years of exposure. Mean steady-state C1-INH functional activity increased to 66.6% with 60 IU/kg. Incidence of adverse events was low and similar in both dose groups (11.3 and 8.5 events per patient-year for 40 IU/kg and 60 IU/kg, respectively). For 40 IU/kg and 60 IU/kg, median annualized attack rates were 1.3 and 1.0, respectively, and median rescue medication use was 0.2 and 0.0 times per year, respectively. Of 23 patients receiving 60 IU/kg for more than 2 years, 19 (83%) were attack-free during months 25 to 30 of treatment. Conclusions: In patients with frequent HAE attacks, long-term replacement therapy with C1-INH(SC) is safe and exhibits a substantial and sustained prophylactic effect, with the vast majority of patients becoming free from debilitating disease symptoms
School-based prevention for adolescent Internet addiction: prevention is the key. A systematic literature review
Adolescentsâ media use represents a normative need for information, communication, recreation and functionality, yet problematic Internet use has increased. Given the arguably alarming prevalence rates worldwide and the increasingly problematic use of gaming and social media, the need for an integration of prevention efforts appears to be timely. The aim of this systematic literature review is (i) to identify school-based prevention programmes or protocols for Internet Addiction targeting adolescents within the school context and to examine the programmesâ effectiveness, and (ii) to highlight strengths, limitations, and best practices to inform the design of new initiatives, by capitalizing on these studiesâ recommendations. The findings of the reviewed studies to date presented mixed outcomes and are in need of further empirical evidence. The current review identified the following needs to be addressed in future designs to: (i) define the clinical status of Internet Addiction more precisely, (ii) use more current psychometrically robust assessment tools for the measurement of effectiveness (based on the most recent empirical developments), (iii) reconsider the main outcome of Internet time reduction as it appears to be problematic, (iv) build methodologically sound evidence-based prevention programmes, (v) focus on skill enhancement and the use of protective and harm-reducing factors, and (vi) include IA as one of the risk behaviours in multi-risk behaviour interventions. These appear to be crucial factors in addressing future research designs and the formulation of new prevention initiatives. Validated findings could then inform promising strategies for IA and gaming prevention in public policy and education
- âŠ