8 research outputs found

    Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex

    Get PDF
    The SMC protein complexes play important roles in chromosome dynamics. The function of the SMC5-6 complex remains unclear, though it is involved in resolution of different DNA structures by recombination. We have now identified and characterized the four non-SMC components of the human complex and in particular demonstrated that the MAGEG1 protein is part of this complex. MAGE proteins play important but as yet undefined roles in carcinogenesis, apoptosis, and brain development. We show that, with the exception of the SUMO ligase hMMS21/hNSE2, depletion of any of the components results in degradation of all the other components. Depletion also confers sensitivity to methyl methanesulfonate. Several of the components are modified by sumoylation and ubiquitination

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Nse4 is the kleisin component of the Smc5-6 DNA repair complex

    No full text
    No description supplie

    The SMC5-6 DNA repair complex: bridging of the SMC5-6 heads by the Kleisin, NSE4, and non-Kleisin subunits

    Get PDF
    Structural Maintenance of Chromosomes (SMC) proteins play fundamental roles in many aspects of chromosome organization and dynamics. The SMC complexes form unique structures with long coiled-coil arms folded at a hinge domain, so that the globular N- and C-terminal domains are brought together to form a "head". Within the Smc5/6 complex, we previously identified two subcomplexes containing Smc6-Smc5-Nse2 and Nse1-Nse3-Nse4. A third subcomplex containing Nse5 and 6 has also been identified recently. We present evidence that Nse4 is the kleisin component of the complex, which bridges the heads of Smc5 and 6. The C-terminal part of Nse4 interacts with the head domain of Smc5 and structural predictions for Nse4 proteins suggest similar motifs that are shared within the kleisin family. Specific mutations within a predicted winged helix motif of Nse4 destroy the interaction with Smc5. We propose that Nse4 and its orthologs form the d-kleisin subfamily. We further show that Nse3, as well as Nse5 and Nse6 also bridge the heads of Smc5 and 6. The Nse1-3-4 and Nse5-6 subcomplexes bind to the Smc5-6 heads domain at different sites

    The Bcl-2/Bcl-X L

    No full text
    corecore