14 research outputs found

    Meeting Report: Moving Upstream—Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making

    Get PDF
    Background Assessing adverse effects from environmental chemical exposure is integral to public health policies. Toxicology assays identifying early biological changes from chemical exposure are increasing our ability to evaluate links between early biological disturbances and subsequent overt downstream effects. A workshop was held to consider how the resulting data inform consideration of an “adverse effect” in the context of hazard identification and risk assessment. Objectives Our objective here is to review what is known about the relationships between chemical exposure, early biological effects (upstream events), and later overt effects (downstream events) through three case studies (thyroid hormone disruption, antiandrogen effects, immune system disruption) and to consider how to evaluate hazard and risk when early biological effect data are available. Discussion Each case study presents data on the toxicity pathways linking early biological perturbations with downstream overt effects. Case studies also emphasize several factors that can influence risk of overt disease as a result from early biological perturbations, including background chemical exposures, underlying individual biological processes, and disease susceptibility. Certain effects resulting from exposure during periods of sensitivity may be irreversible. A chemical can act through multiple modes of action, resulting in similar or different overt effects. Conclusions For certain classes of early perturbations, sufficient information on the disease process is known, so hazard and quantitative risk assessment can proceed using information on upstream biological perturbations. Upstream data will support improved approaches for considering developmental stage, background exposures, disease status, and other factors important to assessing hazard and risk for the whole population

    Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    Get PDF
    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS\u27 new paradigm of toxicity pathway-based risk assessment. Data from highthroughput/ high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment

    Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    Get PDF
    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended

    Rethinking developmental toxicity testing: Evolution or revolution?

    No full text
    Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing

    Rethinking developmental toxicity testing: Evolution or revolution?

    No full text
    Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing

    Rethinking developmental toxicity testing: Evolution or revolution?

    No full text
    BACKGROUND: Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? METHODS: A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). RESULTS: The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. DISCUSSION: Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach

    Environmental exposures and mammary gland development: state of the science, public health implications, and research recommendations.

    Get PDF
    ObjectivesPerturbations in mammary gland (MG) development may increase risk for later adverse effects, including lactation impairment, gynecomastia (in males), and breast cancer. Animal studies indicate that exposure to hormonally active agents leads to this type of developmental effect and related later life susceptibilities. In this review we describe current science, public health issues, and research recommendations for evaluating MG development.Data sourcesThe Mammary Gland Evaluation and Risk Assessment Workshop was convened in Oakland, California, USA, 16-17 November 2009, to integrate the expertise and perspectives of scientists, risk assessors, and public health advocates. Interviews were conducted with 18 experts, and seven laboratories conducted an MG slide evaluation exercise. Workshop participants discussed effects of gestational and early life exposures to hormonally active agents on MG development, the relationship of these developmental effects to lactation and cancer, the relative sensitivity of MG and other developmental end points, the relevance of animal models to humans, and methods for evaluating MG effects.SynthesisNormal MG development and MG carcinogenesis demonstrate temporal, morphological, and mechanistic similarities among test animal species and humans. Diverse chemicals, including many not considered primarily estrogenic, alter MG development in rodents. Inconsistent reporting methods hinder comparison across studies, and relationships between altered development and effects on lactation or carcinogenesis are still being defined. In some studies, altered MG development is the most sensitive endocrine end point.ConclusionsEarly life environmental exposures can alter MG development, disrupt lactation, and increase susceptibility to breast cancer. Assessment of MG development should be incorporated in chemical test guidelines and risk assessment
    corecore