109 research outputs found

    Memories of John N. Brady: scientist, mentor and friend

    Get PDF
    Friends and colleagues remember John N. Brady, Ph.D., Chief of the Virus Tumor Biology Section of the Laboratory of Cellular Oncology, who died much too young at the age of 57 on April 27, 2009 of colon cancer. John grew up in Illinois and received his Ph.D. with Dr. Richard Consigli at Kansas State University studying the molecular structure of polyomavirus. In 1984 John came to the National Institutes of Health as a Staff Fellow in the laboratory of Dr. Norman Salzman, Laboratory of Biology of Viruses NIAID, where he was among the first to analyze SV40 transcription using in vitro transcription systems and to analyze regulatory sequences for SV40 late transcription. He then trained with Dr. George Khoury in the Laboratory of Molecular Virology NCI, where he identified SV40 T-antigen as a transcriptional activator protein. His research interests grew to focus on the human retroviruses: human T-cell lymphotropic virus type I (HTLV-I) and human immunodeficiency virus (HIV), analyzing how interactions between these viruses and the host cell influence viral gene regulation, viral pathogenesis and viral transformation. His research also impacted the fields of eukaryotic gene regulation and tumor suppressor proteins. John is survived by his wife, Laraine, and two sons, Matt and Kevin

    p53-Independent Induction of Apoptosis by the HTLV-I Tax Protein Following UV Irradiation

    Get PDF
    AbstractHuman T cell leukemia virus type 1 (HTLV-1) encodes a transforming protein, Tax. Tax is a promiscuous viral transactivator involved in both cell growth and death control. We have previously shown that Tax sensitizes cells to apoptosis induced by DNA-damaging agents and this report further characterizes the Tax-mediated apoptosis pathway. We found that Tax-mediated apoptosis in response to UV irradiation was inhibited by Bcl-2 and Bcl-XL overexpression and by treatment with the caspase inhibitor z-VAd-FMK. Since Tax has been shown to functionally inactivate the apoptosis regulator p53, the effect of Tax on apoptosis in the absence of p53 was examined. In these studies, Tax sensitized p53-negative cells to apoptose, suggesting that Tax can mediate a p53-independent form of apoptosis. In addition, cells expressing both Tax and p53 displayed higher levels of apoptosis than cells expressing either protein alone, suggesting that the apoptosis-inducing activities of Tax and p53 are not completely overlapping. These observations demonstrate that Tax can utilize a p53-independent mechanism to induce apoptotic cell death following UV irradiation

    Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Activation of the HTLV-I Long Terminal Repeat by the Hepatitis B Virus X Protein

    Get PDF
    AbstractThe human T-cell leukemia virus type I (HTLV-I) Tax protein and the hepatitis B virus (HBV) X protein have each been shown to activate transcription of their respective viral promoters as well as a subset of cellular gene promoters. Here we show that the HTLV-I long terminal repeat (LTR) is responsive to HBV X transactivation. Maximum levels of X-mediated transactivation of the LTR were 8-fold. An X-responsive-region (XRR) of the LTR is located between nucleotides −355 and −276 and contains an AP-2 binding site, a previously recognized X-responsive element. We demonstrated that Tax and X synergize to activate transcription from the HTLV-I LTR, although the AP-2 binding site was not required for this synergy. These results raise the possibility that the HBV X protein may affect the level of HTLV-I gene expression in co-infected individuals

    HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Get PDF
    BACKGROUND: Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. RESULTS: This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR) at several positions and consist of two alternatively spliced variants (SP1 and SP2). Expression of the most abundant HBZ spliced variant (SP1) could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. CONCLUSION: These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis

    C7a, a Biphosphinic Cyclopalladated Compound, Efficiently Controls the Development of a Patient-Derived Xenograft Model of Adult T Cell Leukemia/Lymphoma

    Get PDF
    Adult T-cell leukemia/lymphoma (ATLL) is a highly aggressive disease that occurs in individuals infected with the human T lymphotropic virus type 1 (HTLV-1). Patients with aggressive ATLL have a poor prognosis because the leukemic cells are resistant to conventional chemotherapy. We have investigated the therapeutic efficacy of a biphosphinic cyclopalladated complex {Pd2 [S(−)C2, N-dmpa]2 (μ-dppe)Cl2}, termed C7a, in a patient-derived xenograft model of ATLL, and investigated the mechanism of C7a action in HTLV-1-positive and negative transformed T cell lines in vitro. In vivo survival studies in immunocompromised mice inoculated with human RV-ATL cells and intraperitoneally treated with C7a led to significantly increased survival of the treated mice. We investigated the mechanism of C7a activity in vitro and found that it induced mitochondrial release of cytochrome c, caspase activation, nuclear condensation and DNA degradation. These results suggest that C7a triggers apoptotic cell death in both HTLV-1 infected and uninfected human transformed T-cell lines. Significantly, C7a was not cytotoxic to peripheral blood mononuclear cells (PBMC) from healthy donors and HTLV-1-infected individuals. C7a inhibited more than 60% of the ex vivo spontaneous proliferation of PBMC from HTLV-1-infected individuals. These results support a potential therapeutic role for C7a in both ATLL and HTLV-1-negative T-cell lymphomas

    High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Get PDF
    The virologic synapse (VS), which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS) formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC) relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore