33 research outputs found

    From C/Mrkos to P/Halley: 30 years of cometary spectroscopy

    Get PDF
    An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2

    Spectra of comet P/Halley at R = 4 - 8 AU

    Get PDF
    Spectra of Comet Halley (lambda lambda = 3400-6500 A) were acquired at pre- and post-perihelion distances of 4.8 AU on 1985 Feb. 17 (Coma V equals 18.9 mag) and 1987 Feb. 1 (coma V = 15.9 mag) using the 4.5-m Multiple-Mirror Telescope (MMT) and the CTIO 4.0-m telescope, respectively. The CN(0,0) violet system band flux at 4.8 AU was approx. 15 times greater at the post-perhelion phase compared to pre-perihelion. Additional post-perihelion spectra, obtained on 1986 Nov. 28 to 30 with the MTT, showed CN(0,0) and very weak C3 4040 A emission. The MMT data are one-dimensional spectra (aperture: 5 arc sec diameter) obtained with an intensified Reticon while the CTIO data are two-dimensional spectra (slit length = 280 arc sec) obtained with a 2D-Frutti photon counting system. Extended CN(0,0) emission was detected in the 1987 Feb. 1 (at 4.8 AU) spectra to a distance of at least 70 arc sec in the solar and anti-solar directions. Additional CCD spectra obtained with the KPNO 2.2-meter telescope on 1988 Feb. 20 (at 7.9 AU) show scattered solar continuum approx. 32 arc sec diameter. However, no emission features were detected at 7.9 AU

    Long slit spectroscopy of NH2 in comets Halley, Wilson, and Nishikawa-Takamizawa-Tago

    Get PDF
    Long-slit spectra of comets Halley, Wilson and Nishikawa-Takamizawa-Tago were obtained with the 3.9 meter Anglo-Australian Telescope. Spectra of comets Halley and Wilson were obtained with the IPCS at a spectral resolution of 0.5 A and a spatial resolution of 10(exp 3) km. Spectra of comets Wilson and Nishikawa-Takamizawa-Tago were obtained with a CCD at a spectral resolution of 1.5 A and a spatial resolution of approximately 3 x 10(exp 3) km. Surface brightness profiles for NH2 were extracted from the long-slit spectra of each comet. The observed surface brightness profiles extend along the slit to approximately 6 x 10(exp 4) km from the nucleus in both sunward and tailward directions. By comparing surface distribution calculated from an appropriate coma model with observed surface brightness distributions, the photodissociation timescale of the parent molecule of NH2 can be inferred. The observed NH2 surface brightness profiles in all three comets compares well with a surface brightness profile calculated using the vectorial model, an NH3 photodissociation timescale of 7 x 10(exp 3) seconds, and an NH2 photodissociation timescale of 34,000 seconds

    Nitrogen abundance in Comet Halley

    Get PDF
    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion

    NH3 and NH2 in the coma of Comet Brorsen-Metcalf

    Get PDF
    Evidence consistent with NH3 ice in the nucleus of Comet Brorsen-Metcalf as the source of the NH2 observed in the comet coma is presented. The distribution of NH2 is symmetric and shows no evidence for jet structure at the 3-sigma significance level above background emission. An azimuthal average of the NH2 image produces an NH2 surface brightness profile for Comet Brorsen-Metcalf which yields a factor of about-10 improvement in the signal-to-noise ratio over previous 1D long-slit NH2 observations, and provides a significant constraint on the NH2 photodissociation time scale in comets. A Monte Carlo simulation of the comet coma, assuming that NH2 is the primary source of NH2, is described and compared with the observations. For an observed production rate, Q(H2O) is approximately equal to 7 x 10 exp 28 molecules/s, collisional effects on the NH3 and NH2 outflow had at most an approximately 10-percent effect on the NH2 surface brightness profile. Because Comet Brorsen-Metcalf showed no significant dust or gas production rate variability, it is argued that steady state conditions best match the comet at the time of the observations

    The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol

    Full text link
    We present an interferometric and single dish study of small organic species toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp, both the single-dish and interferometer observations of CH3OH indicate an excitation temperature of 105+/-5 K and an average production rate ratio Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis observations of CH3OH suggest a distribution well described by a spherical outflow and no evidence of significant extended emission. Single-dish observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of 200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The non-detection of a previously claimed transition of cometary (CH2OH)2 toward Comet Hale-Bopp with the 12m telescope indicates a compact distribution of emission, D<9'' (<8500 km). For the single-dish observations of Comet T7 LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear species distributed into the coma via direct sublimation off cometary ices from the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap

    Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression

    Get PDF
    From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-Ξ² and Wnt/Ξ²-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer

    Higher or Lower Hemoglobin Transfusion Thresholds for Preterm Infants

    Get PDF
    Background: Limited data suggest that higher hemoglobin thresholds for red-cell transfusions may reduce the risk of cognitive delay among extremely-low-birth-weight infants with anemia. Methods: We performed an open, multicenter trial in which infants with a birth weight of 1000 g or less and a gestational age between 22 weeks 0 days and 28 weeks 6 days were randomly assigned within 48 hours after delivery to receive red-cell transfusions at higher or lower hemoglobin thresholds until 36 weeks of postmenstrual age or discharge, whichever occurred first. The primary outcome was a composite of death or neurodevelopmental impairment (cognitive delay, cerebral palsy, or hearing or vision loss) at 22 to 26 months of age, corrected for prematurity. Results: A total of 1824 infants (mean birth weight, 756 g; mean gestational age, 25.9 weeks) underwent randomization. There was a between-group difference of 1.9 g per deciliter (19 g per liter) in the pretransfusion mean hemoglobin levels throughout the treatment period. Primary outcome data were available for 1692 infants (92.8%). Of 845 infants in the higher-threshold group, 423 (50.1%) died or survived with neurodevelopmental impairment, as compared with 422 of 847 infants (49.8%) in the lower-threshold group (relative risk adjusted for birth-weight stratum and center, 1.00; 95% confidence interval [CI], 0.92 to 1.10; P = 0.93). At 2 years, the higher- and lower-threshold groups had similar incidences of death (16.2% and 15.0%, respectively) and neurodevelopmental impairment (39.6% and 40.3%, respectively). At discharge from the hospital, the incidences of survival without severe complications were 28.5% and 30.9%, respectively. Serious adverse events occurred in 22.7% and 21.7%, respectively. Conclusions: In extremely-low-birth-weight infants, a higher hemoglobin threshold for red-cell transfusion did not improve survival without neurodevelopmental impairment at 22 to 26 months of age, corrected for prematurity

    Limitations of Conventional Magnetic Resonance Imaging as a Predictor of Death or Disability Following Neonatal Hypoxic-Ischemic Encephalopathy in the Late Hypothermia Trial

    Get PDF
    Objective: To investigate if magnetic resonance imaging (MRI) is an accurate predictor for death or moderate-severe disability at 18-22 months of age among infants with neonatal encephalopathy in a trial of cooling initiated at 6-24 hours. Study design: Subgroup analysis of infants β‰₯36 weeks of gestation with moderate-severe neonatal encephalopathy randomized at 6-24 postnatal hours to hypothermia or usual care in a multicenter trial of late hypothermia. MRI scans were performed per each center's practice and interpreted by 2 central readers using the Eunice Kennedy Shriver National Institute of Child Health and Human Development injury score (6 levels, normal to hemispheric devastation). Neurodevelopmental outcomes were assessed at 18-22 months of age. Results: Of 168 enrollees, 128 had an interpretable MRI and were seen in follow-up (n = 119) or died (n = 9). MRI findings were predominantly acute injury and did not differ by cooling treatment. At 18-22 months, death or severe disability occurred in 20.3%. No infant had moderate disability. Agreement between central readers was moderate (weighted kappa 0.56, 95% CI 0.45-0.67). The adjusted odds of death or severe disability increased 3.7-fold (95% CI 1.8-7.9) for each increment of injury score. The area under the curve for severe MRI patterns to predict death or severe disability was 0.77 and the positive and negative predictive values were 36% and 100%, respectively. Conclusions: MRI injury scores were associated with neurodevelopmental outcome at 18-22 months among infants in the Late Hypothermia Trial. However, the results suggest caution when using qualitative interpretations of MRI images to provide prognostic information to families following perinatal hypoxia-ischemia

    MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene

    Get PDF
    INTRODUCTION: The study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged. METHODS: microRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3' untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets. RESULTS: A large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients. CONCLUSIONS: These studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor
    corecore