3,261 research outputs found

    An Application of Kerr Blackhole Fly-Wheel Model to Statistical Properties of QSOs/AGNs

    Get PDF
    The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr blackholes (BHs), so-called the fly-wheel (rotation driven) model. The fly-wheel engine of the BH-accretion disk system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z102z \sim 10^2 and obtains nearly maximum but finite rotation energy (\sim extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through an magnetohydrodynamic process. This model naturally leads finite lifetime of AGN activity. Nitta et al. (1991) clarified individual evolution of Kerr BH fly-wheel engine which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimension-less small parameter. We impose a statistical model for the initial mass function (IMF) of ensemble of BHs by the Press-Schechter formalism. By the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.Comment: 12 pages, 7 figures Fig.7 has been replace

    Facial Identification at a Virtual Reality Airport

    Get PDF
    Person identification at airports requires the comparison of a passport photograph with its bearer. In psychology, this process is typically studied with static pairs of face photographs that require identity-match (same person shown) versus mismatch (two different people) decisions, but this approach provides a limited proxy for studying how environment and social interaction factors affect this task. In this study, we explore the feasibility of virtual reality (VR) as a solution to this problem, by examining the identity matching of avatars in a VR airport. We show that facial photographs of real people can be rendered into VR avatars in a manner that preserves image and identity information (Experiments 1 to 3). We then show that identity matching of avatar pairs reflects similar cognitive processes to the matching of face photographs (Experiments 4 and 5). This pattern holds when avatar matching is assessed in a VR airport (Experiments 6 and 7). These findings demonstrate the feasibility of VR as a new method for investigating face matching in complex environments

    Inhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma

    Get PDF
    Background: The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients’ average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy. Methodology/Principal Findings: In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOSR2 and U-2OSR2) were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp) expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines. Conclusions/Significance: Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma

    Pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement

    Get PDF
    Results on charged pion and kaon production in central Pb+Pb collisions at 20A and 30A GeV are presented and compared to data at lower and higher energies. A rapid change of the energy dependence is observed around 30A GeV for the yields of pions and kaons as well as for the shape of the transverse mass spectra. The change is compatible with the prediction that the threshold for production of a state of deconfined matter at the early stage of the collisions is located at low SPS energies.Comment: 12 pages, 8 figure

    Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy

    Full text link
    A novel approach, the identity method, was used for particle identification and the study of fluctuations of particle yield ratios in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the moments of the unknown multiplicity distributions of protons (p), kaons (K), pions (π\pi) and electrons (e). Using these moments the excitation function of the fluctuation measure νdyn\nu_{\text{\text{dyn}}}[A,B] was measured, with A and B denoting different particle types. The obtained energy dependence of νdyn\nu_{\text{dyn}} agrees with previously published NA49 results on the related measure σdyn\sigma_{\text{dyn}}. Moreover, νdyn\nu_{\text{dyn}} was found to depend on the phase space coverage for [K,p] and [K,π\pi] pairs. This feature most likely explains the reported differences between measurements of NA49 and those of STAR in central Au+Au collisions

    Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N] in nucleus-nucleus collisions at the CERN Super Proton Synchrotron

    Full text link
    Results from the NA49 experiment at the CERN SPS are presented on event-by-event transverse momentum and multiplicity fluctuations of charged particles, produced at forward rapidities in central Pb+Pb interactions at beam momenta 20AA, 30AA, 40AA, 80AA, and 158AA GeV/c, as well as in systems of different size (p+pp+p, C+C, Si+Si, and Pb+Pb) at 158AA GeV/c. This publication extends the previous NA49 measurements of the strongly intensive measure ΦpT\Phi_{p_T} by a study of the recently proposed strongly intensive measures of fluctuations Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N]. In the explored kinematic region transverse momentum and multiplicity fluctuations show no significant energy dependence in the SPS energy range. However, a remarkable system size dependence is observed for both Δ[PT,N]\Delta[P_T, N] and Σ[PT,N]\Sigma[P_T, N], with the largest values measured in peripheral Pb+Pb interactions. The results are compared with NA61/SHINE measurements in p+pp+p collisions, as well as with predictions of the UrQMD and EPOS models.Comment: 12 pages, 14 figures, to be submitted to PR

    Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions at the CERN SPS

    Get PDF
    Multiplicity fluctuations of positively, negatively and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV. The multiplicity distributions and their scaled variances are presented in dependence of collision energy as well as of rapidity and transverse momentum. The distributions have bell-like shape and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic model UrQMD significantly overpredicts the mean, but approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.Comment: 26 pages, 34 figures, updated version including referee comment

    Pion emission from the T2K replica target: method, results and application

    Get PDF
    The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.Comment: updated version as published by NIM

    Rapidity and energy dependence of the electric charge correlations in A+A collisions at the SPS energies

    Get PDF
    Results from electric charge correlations studied with the Balance Function method in A+A collisions from 20\emph{A} to 158\emph{A} GeV are presented in two different rapidity intervals: In the mid-rapidity region we observe a decrease of the width of the Balance Function distribution with increasing centrality of the collision, whereas this effect vanishes in the forward rapidity region. Results from the energy dependence study in central Pb+Pb collisions show that the narrowing of the Balance Function expressed by the normalised width parameter \textit{W} increases with energy towards the highest SPS and RHIC energies. Finally we compare our experimental data points with predictions of several models. The hadronic string models UrQMD and HIJING do not reproduce the observed narrowing of the Balance Function. However, AMPT which contains a quark-parton transport phase before hadronization can reproduce the narrowing of the BF's width with centrality. This confirms the proposed sensitivity of the Balance Function analysis to the time of hadronization.Comment: Submitted in Phys. Rev.
    corecore