10 research outputs found

    Effect of pressure on the magnetic, transport, and thermal-transport properties of the electron-doped manganite CaMn1−x_{1-x}Sbx_{x}O3_{3}

    Get PDF
    We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn1−x_{1-x}Sbx_{x}O3_{3}. The substitution of Sb5+^{5+} ion for Mn 4+^{4+}site of the parent matrix causes one-electron doping with the chemical formula CaMn1−2x4+^{4+}_{1-2x}Mnx3+^{3+}_{x}Sbx5+^{5+}_{x}O3_{3} accompanied by a monotonous increase in unit cell volume as a function of xx. Upon increasing the doping level of Sb, the magnitudes of both electrical resistivity and negative Seebeck coefficient are suppressed at high temperatures, indicating the electron doping. Anomalous diamagnetic behaviors at x=0.05x=0.05 and 0.08 are clearly observed in field cooled dc magnetization. The effect of hydrostatic pressure on dc magnetization is in contrast to the chemical pressure effect due to Sb doping. The dynamical effect of ac magnetic susceptibility measurement points to the formation of the magnetically frustrated clusters such as FM clusters embedded in canted AFM matrix.Comment: 12 pages,11 figures, 3 table

    Effect of pressure on the magnetic, transport, and thermal-transport properties of the electron-doped manganite CaMn1−x_{1-x}Sbx_{x}O3_{3}

    Get PDF
    We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn1−x_{1-x}Sbx_{x}O3_{3}. The substitution of Sb5+^{5+} ion for Mn 4+^{4+}site of the parent matrix causes one-electron doping with the chemical formula CaMn1−2x4+^{4+}_{1-2x}Mnx3+^{3+}_{x}Sbx5+^{5+}_{x}O3_{3} accompanied by a monotonous increase in unit cell volume as a function of xx. Upon increasing the doping level of Sb, the magnitudes of both electrical resistivity and negative Seebeck coefficient are suppressed at high temperatures, indicating the electron doping. Anomalous diamagnetic behaviors at x=0.05x=0.05 and 0.08 are clearly observed in field cooled dc magnetization. The effect of hydrostatic pressure on dc magnetization is in contrast to the chemical pressure effect due to Sb doping. The dynamical effect of ac magnetic susceptibility measurement points to the formation of the magnetically frustrated clusters such as FM clusters embedded in canted AFM matrix.Comment: 12 pages,11 figures, 3 table

    Suppression of the low-temperature phase-separated state under pressure in (Eu1−x_{1-x}Gdx_{x})0.6_{0.6}Sr0.4_{0.4}MnO3_{3} (x=0,0.1x=0,0.1)

    Full text link
    We have demonstrated the effect of pressure on the steplike metamagnetic transition and its associated magnetostriction in (Eu1−x_{1-x}Gdx_{x})0.6_{0.6}Sr0.4_{0.4}MnO3_{3} (x=0x=0 and 0.1). The critical field initiating the field induced ferromagnetic transition in both samples is lowered by the applied pressure. The further application of external pressure up to 1.2 GPa on the x=0x=0 parent sample causes a spontaneous ferromagnetic transition with a second-oder like character, leading to collapses of the steplike transition and its concomitant lattice striction. These findings indicate a crucial role of the low-temperature phase separated state characterized by a suppressed magnetization upon decreasing temperature.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1006.145
    corecore