21 research outputs found

    Hydromagnetic Mixed Convective Nanofluid Slip Flow past an Inclined Stretching Plate in the Presence of Internal Heat Absorption and Suction

    Get PDF
    The steady two-dimensional mixed convective boundary layer flow of nanofluid over an inclined stretching plate with the effects of magnetic field, slip boundary conditions, suction and internal heat absorption have been investigated numerically. Two different types of nanoparticles, namely copper and alumina with water as the base fluid are considered. Similarity transformations are employed to transform the governing nonlinear partial differential equations into coupled non-linear ordinary differential equations. The influence of pertinent parameters such as magnetic interaction parameter, angle of inclination, volume fraction, suction parameter, velocity slip parameter, thermal jump parameter, heat absorption parameter, mixed convection parameter and Prandtl number on the flow and heat transfer characteristics are discussed. A representative set of results are displayed graphically to illustrate the issue of governing parameters on the dimensionless velocity and temperature. Numerical values of skin friction coefficient and the Nusselt number are shown in tabular form. A comparative study between the previously published work and the present results in a limiting sense reveals excellent agreement between them

    Needle(s) in the Haystack – Synchronous Multifocal Tumor Induced Osteomalacia

    Get PDF
    This is the author accepted manuscript. The final version is available from Endocrine Society via http://dx.doi.org/10.1210/jc.2015-3854MG is supported by the NIHR Cambridge Biomedical Research Centre

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Metal-organic frameworks based membrane as a permselective separator for lithium-sulfur batteries

    No full text
    Although lithium-sulfur batteries possess five-fold higher theoretical capacity than the state-of-the-art lithium-ion batteries, the migration of polysulfide between the electrodes remains as a problem area. In order to overcome this issue, numerous strategies have been adopted. Herein, we introduce a novel 1,3,5 benzene tricarboxylate-manganese (Mn-BTC) metal organic framework (MOF) coated-Celgard (2320) separator which acts as permselective in a Li-S cell. The Li-S cell with coated membrane exhibited higher discharge capacity than the uncoated one. The diffusion of polysulfides is successfully blocked by the separator due to the repulsive ionic forces provided by the COOe that is present in the periphery of Mn-BTC MOF which was confirmed by XPS and XRD analyse

    Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries

    No full text
    In this work, the possibility of employing aluminium terephthalic acid metal organic framework (Al-TPAMOF)- laden composite polymer membranes as electrolyte for all-solid-state lithium-sulfur (Li-S) and lithium-metal (Li-metal) polymer batteries is explored. The prepared composite polymer electrolytes (CPEs) based on a poly(ethylene oxide) (PEO) network with lithium bis(trifluoromethane)sulfonimide (LiTFSI) and Al-TPA-MOF are mechanically robust and thermally stable up to 270 �C, and provide appreciable ionic conductivity in the order of 0.1mS cm�1 at 60 �C. The enhanced compatibility of CPEs with the lithium metal anode is attributed to the scavenging effect of Al-TPA-MOF. Laboratory scale allsolid- state Li-S and Li-metal polymer cells are assembled, which deliver specific capacities exceeding 800 and 130mAh g�1, respectively, and a stable performance upon prolonged cycling even at 60 �C, which is superior to earlier reports on similar systems

    Hydrogen Peroxide and GA<sub>3</sub> Levels Regulate the High Night Temperature Response in Pistils of Wheat (<i>Triticum aestivum</i> L.)

    No full text
    High night temperature (HNT) impairs crop productivity through the reproductive failure of gametes (pollen and pistil). Though female gametophyte (pistil) is an equal partner in the seed-set, the knowledge of the antioxidant system(s) and hormonal control of HNT tolerance or susceptibility of pistils is limited and lacking. The objectives of this study were to determine the antioxidant mechanism for homeostatic control of free radicals, and the involvement of abscisic acid (ABA) and gibberellic acid (GA3) in HNT stress protection in the wheat pistils of contrasting wheat genotypes. We hypothesized that HNT tolerance is attributed to the homeostatic control of reactive oxygen species (ROS) and hormonal readjustment in pistils of the tolerant genotype. The ears of two contrasting wheat genotypes—HD 2329 (susceptible) and Raj 3765 (tolerant) were subjected to two HNTs (+5 °C and +8 °C) over ambient, in the absence and presence of dimethylthiourea (DMTU), a chemical trap of hydrogen peroxide (H2O2). Results showed that HNTs significantly increased ROS in pistils of susceptible genotype HD 2329 to a relatively greater extent compared to tolerant genotype Raj 3765. The response was similar in the presence or absence of DMTU, but the H2O2 values were lower in the presence of DMTU. The ROS levels were balanced by increased activity of peroxidase under HNT to a greater extent in the tolerant genotype. Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) activity was inversely related to H2O2 production within a critical range in Raj 3765, indicating its modulation by H2O2 levels as no change was observed at the transcriptional level. The hormonal status showed increased ABA and decreased GA3 contents with increasing temperature. Our study elucidates the role of H2O2 and GA3 in stress tolerance of pistils of tolerant genotype where GAPC acts as a ROS sensor due to H2O2-mediated decrease in its activity
    corecore