19 research outputs found

    Expression pattern of FGFR2, Grb2 and Plcγ1 acts as a novel prognostic marker of recurrence recurrence-free survival in lung adenocarcinoma

    Get PDF
    Lung adenocarcinoma is characterized by complex biology involving alterations at the genomic and protein expression levels. FGFR2 mutation and/or amplification are key drivers of disease progression and drug resistance in lung adenocarcinoma patients. These genetic alterations drive oncogenic downstream signalling due to the deregulated activity of the receptor. We have previously reported that wild type FGFR2 provides a binding site for which two proteins, Grb2 and Plcγ1, compete in a concentration-dependent manner. Metastasis and invasion ensue when Plcγ1 prevails on the receptor giving rise to oncogenic outcome in the absence of gene mutation/deletion. The effect of this signalling mechanism on FGFR2-driven lung adenocarcinoma has not previously been considered. In this study we show that fluctuation in the combinatorial expression levels of FGFR2, Grb2 and Plcγ1 modulates cell invasive properties, tumor formation and is linked to recurrence-free survival in 150 lung adenocarcinoma patients. High levels of expression of FGFR2 and Plcγ1 in a low background of Grb2 significantly correlates with poor prognosis. On the other hand, low levels of expression of FGFR2 and Plcγ1 in a high background of Grb2 correlates with favourable prognosis. This study defines the expression pattern of FGFR2, Plcγ1 and Grb2 as a novel prognostic marker in human lung adenocarcinoma. Thus, consideration of the Grb2 and Plcγ1-mediated mechanism of FGFR2 regulation will enhance the therapeutic targeting of aberrant FGFR2 activity to provide the much-needed improvement to the treatment regimen of this high mortality disease

    Combined clinical and genomic signatures for the prognosis of early stage non-small cell lung cancer based on gene copy number alterations

    Get PDF
    BACKGROUND: The development of a more refined prognostic methodology for early non-small cell lung cancer (NSCLC) is an unmet clinical need. An accurate prognostic tool might help to select patients at early stages for adjuvant therapies. RESULTS: A new integrated bioinformatics searching strategy, that combines gene copy number alterations and expression, together with clinical parameters was applied to derive two prognostic genomic signatures. The proposed methodology combines data from patients with and without clinical data with a priori information on the ability of a gene to be a prognostic marker. Two initial candidate sets of 513 and 150 genes for lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), respectively, were generated by identifying genes which have both: a) significant correlation between copy number and gene expression, and b) significant prognostic value at the gene expression level in external databases. From these candidates, two panels of 7 (ADC) and 5 (SCC) genes were further identified via semi-supervised learning. These panels, together with clinical data (stage, age and sex), were used to construct the ADC and SCC hazard scores combining clinical and genomic data. The signatures were validated in two independent datasets (n = 73 for ADC, n = 97 for SCC), confirming that the prognostic value of both clinical-genomic models is robust, statistically significant (P = 0.008 for ADC and P = 0.019 for SCC) and outperforms both the clinical models (P = 0.060 for ADC and P = 0.121 for SCC) and the genomic models applied separately (P = 0.350 for ADC and P = 0.269 for SCC). CONCLUSION: The present work provides a methodology to generate a robust signature using copy number data that can be potentially used to any cancer. Using it, we found new prognostic scores based on tumor DNA that, jointly with clinical information, are able to predict overall survival (OS) in patients with early-stage ADC and SCC

    miR-337-3p and Its Targets STAT3 and RAP1A Modulate Taxane Sensitivity in Non-Small Cell Lung Cancers

    Get PDF
    NSCLC (non-small cell lung cancer) often exhibits resistance to paclitaxel treatment. Identifying the elements regulating paclitaxel response will advance efforts to overcome such resistance in NSCLC therapy. Using in vitro approaches, we demonstrated that over-expression of the microRNA miR-337-3p sensitizes NCI-H1155 cells to paclitaxel, and that miR-337-3p mimic has a general effect on paclitaxel response in NSCLC cell lines, which may provide a novel adjuvant strategy to paclitaxel in the treatment of lung cancer. By combining in vitro and in silico approaches, we identified STAT3 and RAP1A as direct targets that mediate the effect of miR-337-3p on paclitaxel sensitivity. Further investigation showed that miR-337-3p mimic also sensitizes cells to docetaxel, another member of the taxane family, and that STAT3 levels are significantly correlated with taxane resistance in lung cancer cell lines, suggesting that endogenous STAT3 expression is a determinant of intrinsic taxane resistance in lung cancer. The identification of a miR-337-3p as a modulator of cellular response to taxanes, and STAT3 and RAP1A as regulatory targets which mediate that response, defines a novel regulatory pathway modulating paclitaxel sensitivity in lung cancer cells, which may provide novel adjuvant strategies along with paclitaxel in the treatment of lung cancer and may also provide biomarkers for predicting paclitaxel response in NSCLC

    Elevated PDGFRB gene copy number gain is prognostic for improved survival outcomes in resected malignant pleural mesothelioma

    No full text
    PDGF/PDGFR pathway has been implicated in malignant pleural mesothelioma (MPM) carcinogenesis, and evidence suggests autocrine mechanisms of proliferation. We sought to evaluate the incidence of PDGFRB gene copy number gain (CNG) by fluorescence in situ hybridization and PDGFR pathway protein expression by immunohistochemistry (IHC) and correlate it to patient clinical outcome. Eighty-eight archived tumor blocks from resected MPM with full clinical information were used to perform IHC biomarkers (PDGFR\u3b1, PDGFR\u3b2, p-PDGFR\u3b2) and fluorescence in situ hybridization analysis of PDGFRB gene CNG. Spearman rank correlation, Wilcoxon rank-sum test, Kruskal-Wallis test, BLiP plots, and Kaplan-Meier method were used to analyze the biomarkers and correlation to clinical outcome. Several correlations between the IHC biomarkers were seen; however, none correlated to clinically relevant patient demographics or histology. In the CNG analysis, PDGFRB gene CNG in >10% of tumor cells had lower cytoplasmic p-PDGFR\u3b2 (P =.029), while PDGFRB gene CNG in >40% of tumor cells had a higher cytoplasmic PDGFR\u3b2 (P =.04). PDGFRB gene CNG status did not associate with patient demographics or tumor characteristics. PDGFR pathway IHC biomarkers did not associate with survival outcomes. However, patients with PDGFRB CNG >40% of tumor cells had improved relapse-free survival (HR 0.25 [95% CI 0.09-0.72], P =.0096) and improved overall survival (HR 0.32 [95% CI 0.11-0.89], P =.029). PDGFRB CNG >40% of MPM tumor cells is a potential prognostic biomarker for surgery and may identify a unique population of mesothelioma patients. Future validation of this biomarker in prospective trials is needed. From a retrospective review of archived tissue specimens from patients with resected malignant pleural mesothelioma tumors, we show that patients with PDGFRB CNG >40% of tumor cells had improved relapse-free survival (HR 0.25 [95% CI 0.09-0.72], P =.0096) and improved overall survival (HR 0.32 [95% CI 0.11-0.89], P =.029). PDGFRB CNG >40% of MPM tumor cells is a potential prognostic biomarker for surgery and may identify a unique population of mesothelioma patients

    BSTA Promotes mTORC2-Mediated Phosphorylation of Akt1 to Suppress Expression of FoxC2 and Stimulate Adipocyte Differentiation

    No full text
    Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr308 and Ser473 nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain–containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser473 in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser473 in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser473 in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser473 and reveal an mTORC2-BSTA-Akt1-FoxC2–mediated signaling mechanism that is critical for adipocyte differentiation
    corecore