12 research outputs found

    An Optimized Process for Expression, Scale-Up and Purification of Recombinant Erythropoietin Produced in Chinese Hamster Ovary Cell Culture

    Get PDF
    The DHFR mediated gene amplification employed for selection of recombinant Chinese hamster ovary (rCHO) clones was evaluated by single and multiple step selection of methotrexate (MTX). Multiple step selection of MTX resulted in cells with high amplified copies of erythropoietin (EPO) gene. Expression of EPO rapidly increased with increasing MTX concentration up to 1000 nM, further increased to 2000 nM does not affect the expression. After the MTX selection, cells grown in the presence of MTX were more stable and retained similar amounts of EPO expression and gene copies until 50 doublings. Whereas, cells grown in the absence of MTX were unstable and retained only 50% of initial EPO expression and gene copies at the 50th doubling

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases

    Evaluation of Laboratory and Sonographic Parameters for Detection of Portal Hypertension in Patients with Common Variable Immunodeficiency.

    No full text
    Timely detection of portal hypertension as a manifestation in a subgroup of patients with common variable immunodeficiency (CVID) represents a challenge since it is usually not associated with liver cirrhosis. To identify relevant markers for portal hypertension, we evaluated clinical history, laboratory parameters, and abdominal ultrasound including liver elastography and biomarkers of extracellular matrix formation. Twenty seven (6%) of 479 CVID patients presented with clinically significant portal hypertension as defined by either the presence of esophageal varices or ascites. This manifestation occurred late during the course of the disease (11.8&nbsp;years after first diagnosis of CVID) and was typically part of a multiorgan disease and associated with a high mortality (11/27 patients died during follow up). The strongest association with portal hypertension was found for splenomegaly with a longitudinal diameter of &gt; 16&nbsp;cm. Similarly, most patients presented with a liver stiffness measurement (LSM) of above 6.5&nbsp;kPa, and a LSM above 20&nbsp;kPa was always indicative of manifest portal hypertension. Additionally, many laboratory parameters including Pro-C4 were significantly altered in patients with portal hypertension without clearly increasing the discriminatory power to detect non-cirrhotic portal hypertension in CVID. Our data suggest that a spleen size above 16&nbsp;cm and an elevated liver stiffness above 6.5&nbsp;kPa should prompt further evaluation of portal hypertension and its sequelae, but earlier and better liquid biomarkers of this serious secondary complication in CVID are needed

    The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling

    No full text
    BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9–20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients’ hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript
    corecore