58 research outputs found

    Application of response surface methodology (RSM) to osmotic dehydration and drying of green bell peppers

    Get PDF
    A study to investigate the effect of osmotic solution concentrations of common salt (5%(w/w), 10%(w/w), 15%(w/w), 20%(w/w) and 25%(w/w)) and osmotic process durations (60 min, 90 min, 120 min, 150 min and 180 min) at average room temperature of 31 °C on the drying rate and nutritional qualities (vitamin C, crude protein, crude fibre, fat and ash content) of green bell peppers was conducted. Response Surface Methodology (RSM) under central composite design in Design Expert 8.0.3 computer software package was used to design the experiment, analyze data, and present all results with 3-dimensional plots. The temperature of 50 °C was used to dry all the pre-treated samples to the moisture content of about 7% (wb) in a fabricated cabinet dryer. The results showed that an increase in osmotic solution concentration and osmotic process duration caused the drying rate to drop to about 18g/h, then later increase to more than 21g/h; vitamin C did not reduce below 50mg/100g; crude protein increased but later reduced, however the range of about 18-20.5% was obtained; crude fibre increased to about 4.8% but later reduced to about 4.6%; also, fat decreased but later increased to a maximum value of about 16.5%. The increase in osmotic solution concentration kept the ash content at a steady value of about 4.01%, but the increase in osmotic process duration led to a very sharp increase in ash content from 4.01% to 4.25%. All drying rate (15.53g/h) and nutrients values obtained were better than the control value, that is, an untreated dried sample (vitamin C (46.02 mg/100g), crude protein (17.40%), crude fibre (4.16%), fat (11.42%), ash content (4.01%). This further confirmed that osmotic dehydration is a quality improving pre-treatment method

    Advancing human nutrition without degrading land resources through modeling cropping systems in the Ethiopian highlands

    Get PDF
    Food shortage in sub-Saharan Africa is generally considered a function of limited access to food, with little thought to nutritional quality. Analyzing household production of nutrients across farming systems could be valuable in guiding the improvement of those systems. An optimization model was employed to analyze the scenario of human nutrition and cropland allocation in enset (Enset ventricosum)/root crop-based and cereal-based systems of the Ethiopian Highlands. The type and amount of nutrients produced in each system were analyzed, and an optimization model was used to analyze which cropping strategies might improve the nutritional quality of the household using existing resources. Both production systems were in food deficit, in terms of quantity and quality of nutrients, except for iron. The energy supply of resource-poor households in the enset/root crop-based system was only 75% of the recommended daily dietary allowance (RDA) of the World Health Organization (WHO), whereas resource-rich farmers were able to meet their energy, protein, zinc, and thiamine demands. Extremely high deficiency was found in zinc, calcium, vitamin A, and vitamin C, which provided only 26.5%, 34%, 1.78%, and 12%, of the RDA, respectively. The RDA could be satisfied if the land area occupied by enset, kale, and beans were expanded by about 20%, 10%, and 40%, respectively, at the expense of maize and sweet potato. The cereal-based system also had critical nutrient deficits in calcium, vitamin A, and vitamin C, which provided 30%, 2.5%, and 2% of the RDA, respectively. In the cereal system, the RDA could be fully satisfied by reducing cropland allocated to barley by about 50% and expanding the land area occupied by faba beans, kale, and enset. A shift from the cereal/root crop-dominated system to a perennial-enset dominated system would decrease soil erosion by improving the crop factor by about 45%. This shift would also have a very strong positive impact on soil fertility management. However, any policy suggestions for change in cropland allocation should be done through negotiations with households, communities, and district stakeholders

    Interleukin-6 (\u3cem\u3eIL-6\u3c/em\u3e) rs1800796 and Cyclin Dependent Kinase Inhibitor (\u3cem\u3eCDKN2A/CDKN2B\u3c/em\u3e) rs2383207 Are Associated with Ischemic Stroke in Indigenous West African Men

    Get PDF
    Background—Inherited genetic variations offer a possible explanation for the observed peculiarities of stroke in sub – Saharan African populations. Interleukin–6 polymorphisms have been previously associated with ischemic stroke in some non-African populations. Aim—Herein we investigated, for the first time, the association of genetic polymorphisms of IL-6 and CDKN2A- CDKN2B and other genes with ischemic stroke among indigenous West African participants in the Stroke Investigative Research and Education Network (SIREN) Study. Methods—Twenty-three previously identified single nucleotide polymorphisms (SNPs) in 14 genes of relevance to the neurobiology of ischemic stroke were investigated. Logistic regression models adjusting for known cardiovascular disease risk factors were constructed to assess the associations of the 24 SNPs in rigorously phenotyped cases (N=429) of ischemic stroke (Men = 198; Women = 231) and stroke– free (N=483) controls (Men = 236; Women = 247). Results—Interleukin-6 (IL6) rs1800796 (C minor allele; frequency: West Africans = 8.6%) was significantly associated with ischemic stroke in men (OR = 2.006, 95% CI = [1.065, 3.777], p = 0.031) with hypertension in the model but not in women. In addition, rs2383207 in CDKN2A/CDKN2B (minor allele A with frequency: West Africans = 1.7%) was also associated with ischemic stroke in men (OR = 2.550, 95% CI = [1.027, 6.331], p = 0.044) with primary covariates in the model, but not in women. Polymorphisms in other genes did not show significant association with ischemic stroke. Conclusion—Polymorphisms rs1800796 in IL6 gene and rs2383207 in CDKN2A/CDKN2B gene have significant associations with ischemic stroke in indigenous West African men. CDKN2A/CDKN2B SNP rs2383207 is independently associated with ischemic stroke in indigenous West African men. Further research should focus on the contributions of inflammatory genes and other genetic polymorphisms, as well as the influence of sex on the neurobiology of stroke in people of African ancestry

    The effect of Aloe ferox Mill. in the treatment of loperamide-induced constipation in Wistar rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constipation is the most common gastrointestinal complaint all over the world and it is a risk factor of colorectal cancer. In this study, the efficacy of aqueous leaf extract of <it>Aloe </it><it>ferox </it>Mill. was studied against loperamide-induced constipation in Wistar rats.</p> <p>Methods</p> <p>Constipation was induced by oral administration of loperamide (3 mg/kg body weight) while the control rats received normal saline. The constipated rats were treated with 50, 100 and 200 mg/kg body weight/day of the extract for 7 days during which the feeding characteristics, body weight, fecal properties and gastrointestinal transit ratio were monitored.</p> <p>Results</p> <p>The extract improved intestinal motility, increased fecal volume and normalized body weight in the constipated rats, which are indications of laxative property of the herb with the 200 mg/kg body weight of the extract showing the best efficacy.</p> <p>Conclusion</p> <p>The effect of the extract compares favourably well with senokot, a standard laxative drug. These findings have therefore, lent scientific credence to the folkloric use of the herb as a laxative agent by the people of the Eastern Cape of South Africa.</p

    Novel functional insights into ischemic stroke biology provided by the first genome-wide association study of stroke in indigenous Africans

    Get PDF
    \ua9 The Author(s) 2024. Background: African ancestry populations have the highest burden of stroke worldwide, yet the genetic basis of stroke in these populations is obscure. The Stroke Investigative Research and Educational Network (SIREN) is a multicenter study involving 16 sites in West Africa. We conducted the first-ever genome-wide association study (GWAS) of stroke in indigenous Africans. Methods: Cases were consecutively recruited consenting adults (aged &gt; 18 years) with neuroimaging-confirmed ischemic stroke. Stroke-free controls were ascertained using a locally validated Questionnaire for Verifying Stroke-Free Status. DNA genotyping with the H3Africa array was performed, and following initial quality control, GWAS datasets were imputed into the NIH Trans-Omics for Precision Medicine (TOPMed) release2 from BioData Catalyst. Furthermore, we performed fine-mapping, trans-ethnic meta-analysis, and in silico functional characterization to identify likely causal variants with a functional interpretation. Results: We observed genome-wide significant (P-value &lt; 5.0E−8) SNPs associations near AADACL2 and miRNA (MIR5186) genes in chromosome 3 after adjusting for hypertension, diabetes, dyslipidemia, and cardiac status in the base model as covariates. SNPs near the miRNA (MIR4458) gene in chromosome 5 were also associated with stroke (P-value &lt; 1.0E−6). The putative genes near AADACL2, MIR5186, and MIR4458 genes were protective and novel. SNPs associations with stroke in chromosome 2 were more than 77 kb from the closest gene LINC01854 and SNPs in chromosome 7 were more than 116 kb to the closest gene LINC01446 (P-value &lt; 1.0E−6). In addition, we observed SNPs in genes STXBP5-AS1 (chromosome 6), GALTN9 (chromosome 12), FANCA (chromosome 16), and DLGAP1 (chromosome 18) (P-value &lt; 1.0E−6). Both genomic regions near genes AADACL2 and MIR4458 remained significant following fine mapping. Conclusions: Our findings identify potential roles of regulatory miRNA, intergenic non-coding DNA, and intronic non-coding RNA in the biology of ischemic stroke. These findings reveal new molecular targets that promise to help close the current gaps in accurate African ancestry-based genetic stroke’s risk prediction and development of new targeted interventions to prevent or treat stroke

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Global impact of COVID-19 on stroke care and IV thrombolysis

    Get PDF
    Objective To measure the global impact of COVID-19 pandemic on volumes of IV thrombolysis (IVT), IVT transfers, and stroke hospitalizations over 4 months at the height of the pandemic (March 1 to June 30, 2020) compared with 2 control 4-month periods. Methods We conducted a cross-sectional, observational, retrospective study across 6 continents, 70 countries, and 457 stroke centers. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases. Results There were 91,373 stroke admissions in the 4 months immediately before compared to 80,894 admissions during the pandemic months, representing an 11.5% (95% confidence interval [CI] -11.7 to -11.3, p < 0.0001) decline. There were 13,334 IVT therapies in the 4 months preceding compared to 11,570 procedures during the pandemic, representing a 13.2% (95% CI -13.8 to -12.7, p < 0.0001) drop. Interfacility IVT transfers decreased from 1,337 to 1,178, or an 11.9% decrease (95% CI -13.7 to -10.3, p = 0.001). Recovery of stroke hospitalization volume (9.5%, 95% CI 9.2-9.8, p < 0.0001) was noted over the 2 later (May, June) vs the 2 earlier (March, April) pandemic months. There was a 1.48% stroke rate across 119,967 COVID-19 hospitalizations. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was noted in 3.3% (1,722/52,026) of all stroke admissions. Conclusions The COVID-19 pandemic was associated with a global decline in the volume of stroke hospitalizations, IVT, and interfacility IVT transfers. Primary stroke centers and centers with higher COVID-19 inpatient volumes experienced steeper declines. Recovery of stroke hospitalization was noted in the later pandemic months.Paroxysmal Cerebral Disorder
    corecore