78 research outputs found

    Modified Ariki-Koike algebra and Yokounuma-Hecke like relations

    Full text link
    We find new presentations of the modified Ariki-Koike algebra (known also as Shoji's algebra) Hn,r\mathcal H_{n,r} over an integral domain RR associated with a set of parameters q,u1,,urq,u_1,\ldots,u_r in RR. It turns out that the algebra Hn,r\mathcal H_{n,r} has a set of generators t1,,tnt_1,\ldots,t_n and g1,gn1g_1,\ldots g_{n-1} subject to a set of defining relations similar to the relations of Yokonuma-Hecke algebra. We also obtain a presentation of Hn,r\mathcal H_{n,r} which is independent to the choice of u1,uru_1,\ldots u_r. Hence the algebras associated with the parameters q,u1,urq, u_1,\ldots u_r and q,u1,urq, u'_1,\ldots u'_r are isomorphic even in the case that (u1,ur)(u_1,\ldots u_r) and (u1,ur)(u'_1,\ldots u'_r) are different. As applications of the presentations, we find an explicit trace form on the algebra Hn,r\mathcal H_{n,r} which is symmetrising provided the parameters u1,,uru_1,\ldots, u_r are invertible in RR. We also show that the symmetric group S(r)\mathfrak S(r) acts on the algebra Hn,r\mathcal H_{n,r}, and find a basis and a set of generators of the fixed subalgebra Hn,rS(r)\mathcal H_{n,r}^{\mathfrak S(r)}.Comment: 22 page

    Optical Spectroscopy of Supernova Remnants in M81 and M82

    Full text link
    We present spectroscopy of 28 SNR candidates as well as one H II region in M81, and two SNR candidates in M82. Twenty six out of the M81 candidates turn out to be genuine SNRs, and two in M82 may be shocked condensations in the galactic outflow or SNRs. The distribution of [N II]/H{\alpha} ratios of M81 SNRs is bimodal. M81 SNRs are divided into two groups in the spectral line ratio diagrams: an [O III]-strong group and an [O III]-weak group. The latter have larger sizes, and may have faster shock velocity. [N II]/H{\alpha} ratios of the SNRs show a strong correlation with [S II]/H{\alpha} ratios. They show a clear radial gradient in [N II]/H{\alpha} and [S II]/H{\alpha} ratios: dLog ([N II]/H{\alpha})/dLog R = -0.018 {\pm} 0.008 dex/kpc and dLog ([S II]/H{\alpha})/dLog R = -0.016 {\pm} 0.008 dex/kpc where R is a deprojected galactocentric distance. We estimate the nitrogen and oxygen abundance of the SNRs from the comparison with shock-ionization models. We obtain a value for the nitrogen radial gradient, dLog(N/H)/dLogR = -0.023 {\pm} 0.009 dex/kpc, and little evidence for the gradient in oxygen. This nitrogen abundance shows a few times flatter gradient than those of the planetary nebulae and H II regions. We find that five SNRs are matched with X-ray sources. Their X-ray hardness colors are consistent with thermal SNRs.Comment: 19 pages, 24 figures, 5 tables, ApJ accepte

    FXR Acetylation is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States

    Get PDF
    The nuclear bile acid receptor FXR is critical for regulation of lipid and glucose metabolism. Here, we report that FXR is a target of SIRT1, a deacetylase that mediates nutritional and hormonal modulation of hepatic metabolism. Lysine 217 of FXR is the major acetylation site targeted by p300 and SIRT1. Acetylation of FXR increases its stability but inhibits heterodimerization with RXRalpha, DNA binding, and transactivation activity. Downregulation of hepatic SIRT1 increased FXR acetylation with deleterious metabolic outcomes. Surprisingly, in mouse models of metabolic disease, FXR interaction with SIRT1 and p300 was dramatically altered, FXR acetylation levels were elevated, and overexpression of SIRT1 or resveratrol treatment reduced acetylated FXR levels. Our data demonstrate that FXR acetylation is normally dynamically regulated by p300 and SIRT1 but is constitutively elevated in metabolic disease states. Small molecules that inhibit FXR acetylation by targeting SIRT1 or p300 may be promising therapeutic agents for metabolic disorders

    The mid-infrared view of red sequence galaxies in Abell 2218 with <i>AKARI</i>

    Get PDF
    We present the AKARI Infrared Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z ~ 0.175. Mid-infrared (MIR) emission from ETGs traces circumstellar dust emission from asymptotic giant branch (AGB) stars or/and residual star formation. Including the unique imaging capability at 11 and 15 μm, our AKARI data provide an effective way to investigate MIR properties of ETGs in the cluster environment. Among our flux-limited sample of 22 red sequence ETGs with precise dynamical and line strength measurements (less than 18 mag at 3 μm), we find that at least 41% have MIR-excess emission. The N3 – S11 versus N3 (3 and 11 μm) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A spectral energy distribution analysis reveals that the dust emission from AGB stars is the most likely cause of the MIR excess, with a low level of star formation being the next possible explanation. The MIR-excess galaxies show a wide spread of N3 – S11 colors, implying a significant spread (2-11 Gyr) in the estimated mean ages of stellar populations. We study the environmental dependence of MIR-excess ETGs over an area out to a half virial radius (~1 Mpc). We find that the MIR-excess ETGs are preferentially located in the outer region. From this evidence, we suggest that the fainter, MIR-excess ETGs have just joined the red sequence, possibly due to the infall and subsequent morphological/spectral transformation induced by the cluster environment

    Long-Term Outcome of Single-Chamber Atrial Pacing Compared with Dual-Chamber Pacing in Patients with Sinus-Node Dysfunction and Intact Atrioventricular Node Conduction

    Get PDF
    ∙The authors have no financial conflicts of interest. Purpose: The optimal pacing mode with either single chamber atrial pacemaker (AAI or AAIR) or dual chamber pacemaker (DDD or DDDR) is still not clear in sinus-node dysfunction (SND) and intact atrioventricular (AV) conduction. Materials and Methods: Patients who were implanted with permanent pacemaker using AAI(R) (n = 73) or DDD(R) (n = 113) were compared. Results: The baseline characteristics were comparable between the two groups, with a mean follow-up duration of 69 months. The incidence of death did not show statistical difference. However, the incidence of hospitalization for congestive heart failure (CHF) was significantly lower in the AAI(R) group (0%) than the DDD(R) group (8.8%, p = 0.03). Also, atrial fibrillation (AF) was found in 2.8 % in the AAI(R) group, which was statistically different from 15.2 % of patients in the DDD(R) group (p = 0.01). Four patients (5.5%) with AAI(R) developed AV block, and subsequently switched to DDD(R) pacing. The risk of AF was lower in the patients implanted with AAI(R

    Sparked Reduced Graphene Oxide for Low-Temperature Sodium Beta Alumina Batteries

    Get PDF
    Wetting Na metal on the solid electrolyte of a liquid Na battery determines the operating temperature and performance of the battery. At low temperatures below 200 degrees C, liquid Na wets poorly on a solid electrolyte near its melting temperature (T-m = 98 degrees C), limiting its suitability for use in low-temperature batteries used for large-scale energy-storage systems. Herein, we propose the use of sparked reduced graphene oxide (rGO) that can improve the Na wetting in sodium-beta alumina batteries (NBBs), allowing operation at lower temperatures. Experimental and computational studies indicated rGO layers with nanogaps exhibited complete liquid Na wetting regardless of the surface energy between the liquid Na and the graphene oxide, which originated from the capillary force in the gap. Employing sparked rGO significantly enhanced the cell performance at 175 degrees C; the cell retained almost 100% Coulombic efficiency after the initial cycle, which is a substantial improvement over cells without sparked rGO. These results suggest that coating sparked rGO is a promising but simple strategy for the development of low-temperature NBBs. © 2019 American Chemical Society11sciescopu

    Merging Galaxy Cluster A2255 in Mid-infrared

    Get PDF
    We present the mid-infrared (MIR) observation of a nearby galaxy cluster, A2255, by the AKARI space telescope. Using AKARI's continuous wavelength coverage between 3 and 24 μm and the wide field of view, we investigate the properties of cluster member galaxies to see how the infall of the galaxies, the cluster substructures, and the cluster-cluster merger influence their evolution. We show that the excess of MIR (~11 μm) flux is a good indicator for discriminating galaxies at different evolutionary stages and for dividing galaxies into three classes accordingly: strong MIR-excess (N3 – S11 > 0.2) galaxies that include both unobscured and obscured star-forming galaxies; weak MIR-excess (–2.0 5 Gyr) galaxies where the MIR emission arises mainly from the circumstellar dust around AGB stars; and intermediate MIR-excess (–1.2 < N3 – S11 < 0.2) galaxies in between the two classes that are less than a few Gyr old past the prime star formation activity. With the MIR-excess diagnostics, we investigate how local and cluster-scale environments affect the individual galaxies. We derive the total star formation rate (SFR) and the specific SFR of A2255 using the strong MIR-excess galaxies. The dust-free, total SFR of A2255 is ~130 M_⊙ yr^(–1), which is consistent with the SFRs of other clusters of galaxies at similar redshifts and with similar masses. We find no strong evidence that supports enhanced star formation either inside the cluster or in the substructure region, suggesting that the infall or the cluster merging activities tend to suppress star formation. The intermediate MIR-excess galaxies, representing galaxies in transition from star-forming galaxies to quiescent galaxies, are located preferentially at the medium density region or cluster substructures with higher surface density of galaxies. Our findings suggest that galaxies are being transformed from star-forming galaxies into red, quiescent galaxies from the infall region through near the core which can be explained well by ram-pressure stripping as previous simulation results suggest. We conclude that the cluster merging and the group/galaxy infall suppress star formation and transform galaxies from star-forming galaxies into quiescent galaxies, most likely due to ram-pressure stripping

    Bases for the Bruhat-Chevalley order on all finite Coxeter groups

    Get PDF
    this paper, we explicitly describe bases for all finite Coxeter group
    corecore