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SUMMARY

The nuclear bile acid receptor FXR is critical for regu-
lationof lipid andglucose metabolism. Here, we report
that FXR is a target of SIRT1, a deacetylase that medi-
ates nutritional and hormonal modulation of hepatic
metabolism. Lysine 217 of FXR is the major acetyla-
tion site targeted by p300 and SIRT1. Acetylation of
FXR increases its stability but inhibits heterodimeriza-
tion with RXRa, DNA binding, and transactivation
activity. Downregulation of hepatic SIRT1 increased
FXR acetylation with deleterious metabolic outcomes.
Surprisingly, in mouse models of metabolic disease,
FXR interaction with SIRT1 and p300 was dramatically
altered, FXR acetylation levels were elevated, and
overexpression of SIRT1 or resveratrol treatment
reduced acetylated FXR levels. Our data demonstrate
that FXRacetylation isnormally dynamically regulated
by p300 and SIRT1 but is constitutively elevated in
metabolic disease states. Small molecules that inhibit
FXR acetylation by targeting SIRT1 or p300 may be
promising therapeutic agents for metabolic disorders.

INTRODUCTION

Farnesoid X receptor (FXR) is a ligand-regulated transcription

factor that belongs to a large superfamily of nuclear receptors

(Mangelsdorf and Evans, 1995). Activated by physiological

concentrations of bile acids, FXR regulates expression of

numerous bile acid-responsive genes, mainly in the liver and

intestine, to regulate cholesterol and bile acid homeostasis (Car-

iou and Staels, 2007; Kalaany and Mangelsdorf, 2006; Lee et al.,

2006). Other studies have established that FXR is also a master

regulator of lipid and glucose homeostasis (Lee et al., 2006; Ma

et al., 2006) and is critically involved in liver regeneration (Huang

et al., 2006) and protection of intestines from intestinal bacteria

growth (Inagaki et al., 2006). Disruption of the FXR gene in trans-

genic mice is associated with metabolic diseases, including

diabetes and hypercholesterolemia (Sinal et al., 2000). Of

interest, activation of FXR in diabetic mice improved metabolic

outcomes by reducing serum glucose and lipid levels (Zhang

et al., 2006). Although these critical roles of FXR in normal phys-

iology and metabolic disease processes have been established,

the molecular basis of how FXR activity is modulated in health

and disease states remains largely unexplored.

Nuclear receptors collaborate with numerous transcriptional

cofactors to effectively modulate transcription of their target

genes (Rosenfeld et al., 2006). Transcriptional regulation by

nuclear receptors, therefore, involves the recruitment of cofactors

to target gene promoters that results in histone modification. In

addition, these cofactors also modulate receptor activity by post-

translational modification of the receptor itself, including acetyla-

tion and deacetylation. Previous studies have shown that the

activities of regulatory proteins, such as PGC-1a, Foxo-1, LXR,

and p53, are modulated by protein acetylation and deacetylation

(Daitoku et al., 2004; Kitamura et al., 2005; Lerin et al., 2006;

Li et al., 2007; Luo et al., 2001; Motta et al., 2004; Rodgers

et al., 2005). We recently reported that p300 acetylates FXR, as

well as histones at FXR target gene promoters (Fang et al.,

2008), but the role of FXR acetylation in normal and metabolic

disease states remains unclear.

A mammalian homolog of yeast sir2, SIRT1, regulates cellular

metabolism such that aging and life longevity are affected (Guar-

ente, 2007; Sinclair et al., 2006). SIRT1 is a NAD+-dependent

deacetylase that removes acetyl groups from modified lysine

residues in both histones and transcription factors (Sinclair

et al., 2006). Recent studies demonstrate that SIRT1 plays an

important role in the regulation of metabolism in response to

hormonal and nutritional cues by modulating the activity of

PGC-1a, a master metabolic regulator (Rodgers et al., 2005,

2008). For instance, whereas acetylation of PGC-1a by GCN5

acetylase decreased PGC-1a activity by altering its intranuclear

distribution, deacetylation of PGC-1a by SIRT1 increased its

activity (Lerin et al., 2006; Rodgers et al., 2005). Of interest, acti-

vation of SIRT1 by a polyphenolic compound, resveratrol, in

mouse models of metabolic disease reduced acetylation levels

of PGC-1a and improved metabolic profiles (Baur et al., 2006;

Lagouge et al., 2006).

Both FXR and SIRT1 are critically involved in liver metabolic

regulation (Lee et al., 2006; Lerin et al., 2006; Rodgers and
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Puigserver, 2007; Zhang et al., 2004), and activation of these

proteins in mouse models of metabolic disease improved meta-

bolic outcomes (Baur et al., 2006; Lagouge et al., 2006; Zhang

et al., 2006). Therefore, these previous studies, along with our

recent findings that FXR is acetylated by p300 (Fang et al.,

2008), prompted us to ask whether SIRT1 modulates the activity

of FXR by deacetylation. Using molecular, cellular, and animal

in vivo studies, we investigated the biological function of FXR acet-

ylation in normal and metabolic disease states. Here, we demon-

strate that FXR is a target of SIRT1 in metabolic regulation. Acety-

lation of FXR inhibits its activity and is dynamically regulated by

p300 and SIRT1 under normal conditions. Downregulation

of hepatic SIRT1 by siRNA increased FXR acetylation with

deleterious metabolic outcomes. Surprisingly, FXR acetylation

levels were constitutively elevated in two mouse models of

metabolic disorders, ob/ob mice and mice chronically fed a

western-style diet. Treatment with the SIRT1 activator resveratrol

or adenoviral-mediated overexpression of SIRT1 substantially

reduced FXR acetylation levels in these disease model mice. Our

studies provide an intriguing correlation between elevated FXR

acetylation by decreased SIRT1 activity, decreased FXR activities,

and deleterious metabolic effects in hepatic metabolic disease.

RESULTS

K217 in the Hinge Region of FXR Is the Major
Acetylation Site
As the first step in defining the functional role of FXR acetylation,

we identified lysine (K) residues acetylated using tandem mass

spectrometry (MS/MS). Flag-tagged FXR was expressed in

HepG2 cells, and isolated flag-FXR was acetylated by p300

in vitro (Figures 1A–1C). The MS/MS analysis revealed that K217

in the hinge region was the major site acetylated and that K157 in

the DNA-binding domain was also acetylated (Figures 1D and 1E

and Figure S1 available online). K217 is highly conserved in FXR

in vertebrates (Figure 1F).

To confirm these results, we cotransfected cells with plasmids

for p300 and either FXR or one of the acetylation-defective FXR

mutants, K157R and K217R. Acetylated FXR was detected by

immunoprecipitation under stringent conditions with buffers

containing SDS, followed by western analysis using an anti-acetyl

lysine antibody. FXR acetylation levels were increased by treat-

ment with deacetylase inhibitors trichostatin A (TSA) and nicotin-

amide (Nam) (Figure 1G, lanes 2 and 4), suggesting that FXR

undergoes dynamic acetylation and deacetylation. Treatment

with GW4064, a synthetic FXR agonist (Willson et al., 2001),

modestly increased FXR acetylation (Figure 1G, lanes 3 and 4).

FXR acetylation levels were substantially reduced in the K217R

mutant and nearly abolished in the K157/217R double mutant

(Figure 1G, lanes 4–7). These results indicate that K217 of FXR is

the major acetylation site by p300 and that K157 is also acetylated.

Acetylation of FXR Increases Its Stability
Because FXR protein levels of the acetylation mutants were

markedly reduced (Figure 1G), we tested whether acetylation

of FXR affects its stability. Treatment with MG132, a proteasome

inhibitor, dramatically increased FXR levels and resulted in its

ubiquitination in vitro and in cells (Figures 2A, 2B, S2, and S3).

The degradation rate was determined by monitoring the

decrease of flag-FXR wild-type or mutants after blocking protein

synthesis by cycloheximide (CHX). The half-lives were 5–6 hr for

ligand-activated flag-FXR wild-type and about 2 hr for the K157R

or K217R mutants (Figure 2C), indicating that FXR acetylation

increases its stability. These results suggest that FXR is a target

of ubiquitin-proteasomal degradation, and acetylation of FXR

increases protein stability by inhibiting its degradation.

Mutation of FXR Acetylation Sites Increases
Transactivation
To determine whether acetylation of FXR affects its transactiva-

tion ability, the effects of mutation of K157 and/or K217 on FXR

transactivation were examined. Overexpression of K157R and

K217R mutants increased FXR activity compared to wild-type,

and mutation of both sites synergistically increased FXR trans-

activation activity at the lower amounts of plasmids transfected

(Figure 2D, lanes 2, 4, 6, and 8). Mutation of K122 to arginine

did not alter FXR acetylation levels (data not shown) and had

little effect on FXR transactivation (Figure 2D, lanes 3 and 10).

In the absence of activation of FXR by GW4046, little transactiva-

tion was observed (Figure 2E). Mutation of K157 and K217 to

glutamine residues (Q) to mimic acetylation resulted in transacti-

vation by FXR similar to that of the wild-type (Figure 2E, lanes 4

and 8). Similar results were observed in reporter assays using

a natural SHP promoter-luc (Figure 2F). With both reporters,

the effects of the K217 mutant were greater than those of the

K157 mutant.

We also examined the effects of FXR acetylation on expres-

sion of the endogenous SHP gene in HepG2 cells. The mRNA

levels of SHP were significantly increased when the K157/217R

mutant was coexpressed with p300 (Figure 2G). These results

indicate that FXR transactivation activity is decreased when

FXR is acetylated.

Mutation of K157 and K217 Increases Binding
of FXR/RXRa Heterodimer to DNA
Because FXR activity was decreased by acetylation of FXR, we

tested whether acetylation alters binding of the FXR/RXR heter-

odimer to the DNA. Cells were cotransfected with p300 along

with different amounts of expression plasmids for flag-FXR or

the K157/K217 mutant to yield similar protein expression levels

(Figure 3A). Acetylation of FXR was reduced in the K157/K217

mutant compared to wild-type (Figure 3A, bottom). Antibody

supershift gel mobility shift assays identified the FXR/RXR/

DNA complexes (Figure 3B, lanes 10–13). Although little binding

of wild-type FXR was observed, robust DNA binding was

detected with the K157/K217R mutant (Figure 3B, lanes 4–6

and 7–9). These results suggest that FXR acetylation inhibits

binding of FXR/RXRa to DNA.

To directly test the effect of acetylation of FXR on its DNA

binding, purified flag-FXR was acetylated by p300 in vitro, and

acetylation of flag-FXR was confirmed (Figures 3C and 3D). In

gel shift assays, a single protein/DNA complex was detected,

which was supershifted by the M2 and FXR antibodies

(Figure 3E, lanes 4–7). Binding of unacetylated FXR/RXR was de-

tected in a dose-dependent manner (Figure 3E, lanes 8–13 and

17–22), whereas binding of acetylated FXR was substantially

reduced (Figure 3E, lanes 14–16 and 23–25). Addition of

GW4064 resulted in increased DNA binding of the unacetylated
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Figure 1. The Major Site Acetylated in FXR by p300 Is K217

(A) Experimental outline.

(B and C) After incubation with p300, proteins were separated using SDS-PAGE and stained by colloidal Coomassie blue (B), or acetylated flag-FXR was detected

by western analysis (C). In the bottom panel of (C), the membrane was stripped and reprobed with FXR antibody. An asterisk denotes IgG heavy chain.

(D) Tandem MS (MS/MS) spectrum of the FXR peptide showing acetylation at K217.

(E) A schematic diagram of acetylation sites in FXR.

(F) Alignment of the FXR region containing K217 from various species.

(G) Cos-1 cells transfected with p300 and with flag-FXR (f-FXR) plasmids were treated as indicated for 2 hr. Flag-FXR was immunoprecipitated, and acetylated

FXR was detected by western analysis.
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FXR (Figure 3E, lanes 8–13 and 17–22) but had little effect on

binding of acetylated FXR (Figure 3E, lanes 14–16 and 23–25).

These results demonstrate that binding of FXR/RXR to the

DNA is inhibited when FXR is acetylated.

FXR Acetylation Inhibits FXR/RXRa Heterodimerization
Because DNA binding of FXR/RXR could be impaired if forma-

tion of FXR/RXRa heterodimers is blocked, we examined the

effects of mutation of K157 and K217 on the interaction of FXR

with RXRa in cells coexpressing p300. RXRa was coimmunopre-

cipitated with the FXR acetylation mutants, whereas RXRa

was not detected in FXR immunoprecipitates of wild-type FXR

(Figures 3F, 3G, and S4). These results indicate that FXR acety-

lation inhibits FXR/RXRa heterodimerization.

Because FXR acetylation decreases heterodimerization and

DNA binding of FXR/RXR, acetylation effects on its transactiva-

tion ability should be reduced in FXR fused to a Gal4 DNA-binding

domain (G4DBD). Binding to a Gal4 promoter reporter should be

independent of heterodimerization. In contrast to the enhanced

transactivation ability in (FXRE)3-tk-luc (Figures 2D and 2E) or

SHP promoter-luc (Figure 2F), expression of G4DBD-K217R

did not significantly increase its transactivation (Figure S5). These

results, together with gel shift assays and CoIP protein interaction

Figure 2. FXR Acetylation Increases Its Stability

but Inhibits Transactivation Ability

(A) HepG2 cells infected with Ad-flag-FXR were treated

with vehicle or MG132, and flag-FXR levels were detected.

(B) HepG2 cells were cotransfected with expression plas-

mids as indicated. Flag-FXR was immunoprecipitated

from cell extracts, and ubiquitinated flag-FXR was de-

tected.

(C) Transfected Cos-1 cells were treated with CHX for the

indicated times, and flag-FXR levels in cell extracts were

detected.

(D–F) HepG2 cells were cotransfected with indicated

reporter plasmids and expression plasmids for p300 and

FXR WT or FXR mutants, as indicated. Cells were treated

with 200 nM of GW4064 overnight. The values for firefly

luciferase activities were normalized by dividing by b-

galactosidase activities.

(G) HepG2 cells were cotransfected with plasmids as indi-

cated and treated with GW4064. The mRNA levels were

determined by q-RTPCR. Statistical significance was

measured using the Student’s t test.

*p < 0.05; **p < 0.01; NS, statistically not significant. Error

bars, SEM. n = 3.

studies, demonstrate that FXR acetylation

inhibits FXR/RXRa heterodimerization, which

accounts for, at least in part, impaired binding

of FXR/RXR to the DNA and reduced FXR trans-

activation ability.

SIRT1 Is Associated with FXR in Mouse
Liver In Vivo
The level of acetylation of FXR is likely to be

a balance between acetylation and deacetyla-

tion of the protein. The SIRT1 deacetylase is

emerging as a master metabolic regulator (Guar-

ente,2007;Rodgersetal.,2008)and isapossible

candidate for modulating FXR acetylation. Therefore, we exam-

ined whether SIRT1 associates with FXR in mouse liver. In CoIP

assays, the amount of SIRT1 associated with flag-FXR was

substantially reduced in mice fed cholic acid (CA), a primary bile

acid and natural FXR agonist (Figure S6). To determine whether

overexpression of flag-FXR resulted in nonspecific interaction

with SIRT1, we also examined the interaction between endoge-

nous SIRT1 and endogenous FXR. CA feeding reduced the inter-

action of endogenous FXR with SIRT1 (Figure 4A). Similarly, treat-

ment with GW4046 reduced the interaction of FXR and SIRT1 in

mouse liver (Figure 4B) and in cultured cells (Figure S7). In addi-

tion, the interaction of FXR with SIRT1 was substantially

increased by fasting (Figures 4C and S8). Conversely, FXR inter-

action with p300 was substantially increased after feeding

(Figure S9). These results demonstrate that FXR and SIRT1

interact in mouse liver and that the interaction is decreased by

activation of FXR or in response to feeding.

SIRT1 Directly Interacts with and Deacetylates FXR
The CoIP studies demonstrate that FXR and SIRT1 interact

directly or indirectly within a complex. We next examined whether

SIRT1 can bind directly to FXR using GST pull-downs. FXR inter-

acted with full-length GST-SIRT1 and with the GST-SIRT1
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Figure 3. Acetylation of FXR Inhibits Binding of FXR/RXRa to DNA

(A) Flag-FXR (top) or acetylated flag-FXR (bottom) was detected in Cos-1 cell extracts.

(B) Increasing amounts of cell extracts were incubated with flag-RXRa and the radiolabeled oligonucleotide probe containing the FXRE from the SHP promoter,

and complexes were detected using gel mobility shift (gms) assay.

(C) Experimental outline for the gms using flag-FXR acetylated in vitro.
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fragment (214–441), which contains the sirtuin homology domain,

but not with fragments from other regions (Figures 4D and 4E).

Conversely, FXR and the fragment (137–488), but not the frag-

ment (269–488), bound to GST-SIRT1 (Figures 4F and 4G). The

FXR region from residues (137–269) required for interaction

with SIRT1 contains both K157/K217 acetylation sites. These

results show that FXR interacts directly with SIRT1.

To test whether SIRT1 can deacetylate FXR, we performed

in vitro deacetylation studies. 3H-labeled acetylated GST-FXR

levels were decreased by incubation with GST-SIRT1 in an

NAD+-dependent manner (Figures 4H and S10). To determine

whether SIRT1 decreases FXR acetylation levels in cells,

increasing amounts of SIRT1 or a catalytically inactive SIRT1

mutant were cotransfected with expression plasmids for flag-

(D and E) Purified flag-FXR was incubated with p300 (± acetyl CoA). In (D), acetylated flag-FXR was detected by western analysis. In (E), increasing amounts of

unacetylated or acetylated flag-FXR were incubated with purified RXRa, and the complexes were detected.

(F and G) Cos-1 cells were cotransfected with expression plasmids as indicated with p300 plasmids, and expressed protein levels were determined. Interaction

between flag-FXR and RXRa was detected by CoIP assays.

Figure 4. SIRT1 Directly Interacts with and

Deacetylates FXR

(A–C) Mice were fed normal or CA chow (+) for 6 hr

(A) or were treated with vehicle (�) or GW4064 (+)

for 1 hr (B) or were fasted (fs) overnight or refed (fd)

after overnight fasting (C). CoIP studies were

performed to examine FXR/SIRT1 interaction.

(D) Schematic diagrams of GST-SIRT1 full-length

(FL) and deletion mutants. The gray shaded area

represents the sirtuin homology domain.

(E) 35S-FXR was synthesized in vitro, and GST

pull-down assays were performed.

(F) A schematic diagram of FXR acetylation sites.

(G) 35S-FXR full-length wild-type and mutants

were synthesized, and binding to GST-SIRT1

fusion proteins was determined.

(H) GST-FXR, which had been acetylated using

p300 with 3H-acetyl CoA, was incubated with

eluted GST or GST-SIRT1 and analyzed by

SDS-PAGE followed by fluorography.

(I) Cos-1 cells were cotransfected with the indi-

cated plasmids and treated with deacetylase

inhibitors for 3 hr. Flag-FXR levels were immuno-

precipitated, and acetylated flag-FXR was

detected by western analysis. Acetylated flag-

FXR and IgG heavy chain are indicated by arrow

and asterisk, respectively. SIRT1 and flag-FXR

levels in input are shown.

FXR and p300. FXR acetylation levels

were decreased by SIRT1, whereas levels

were not decreased in cells cotransfected

with the SIRT1 mutant (Figure 4I). These

results indicate that SIRT1 directly inter-

acts with and deacetylates FXR.

FXR Agonist Treatment Results in
Dissociation of SIRT1 from the Shp

Promoter
To determine whether FXR and SIRT1

interact at the promoters of FXR target

genes in vivo, we performed chromatin immunoprecipitation

(ChIP) assays in mouse liver using the Shp gene as a model.

As reported (Fang et al., 2008; Goodwin et al., 2000; Lu

et al., 2000), GW4064 treatment increased Shp mRNA levels

about 8-fold (Figure S11). Association of SIRT1 with the

promoter was detected, and GW4064 treatment resulted in

dissociation of SIRT1 and recruitment of p300, consistent

with the observed increases in histone H3 acetylation at

K9/K14, a gene activation histone modification (Figure 5A).

Similarly, the amount of SIRT1 associated with the promoter

was significantly reduced in mice fed CA chow (Figures 5B

and 5C). These results indicate that the recruitment of SIRT1

to the Shp promoter is decreased by treatment with GW4064

or CA.
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Figure 5. SIRT1 and p300 Reciprocally Regulate FXR Activity

(A–C) Mice were treated with vehicle (�) or GW4064 (+) for 3 hr (A) or fed CA chow for 6 hr (B). Livers were collected for ChIP assay. (C) Band intensities

were quantified using ImageJ, and the values for control samples were set to 1. The SEM is indicated, and statistical significance was determined by Student’s

t test. n = 3.

(D–F) HepG2 cells were infected with control Ad-empty or Ad-SIRT1, and 24 hr later, cells were treated with GW4064 for 1 hr, and ChIP assays were performed. In

(F), relative recruitment of FXR and RXRa was determined as described in (C). *p < 0.05; **p < 0.01.

(G) HepG2 cells were transfected with plasmids as indicated and then infected with adenoviral vectors as indicated. Cells were treated with GW4064, and CoIP

assays were performed.

(H and I) Transfected HepG2 cells were further infected with Ad-flag-FXR and then treated with CHX for indicated times.

(J and K) HepG2 cells transfected with indicated plasmids were treated with FXR agonists overnight, and reporter assays were performed. The mean and SEM are

shown. n = 3.
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SIRT1 Increases Association of FXR/RXRa

with the Promoter
Acetylation of FXR inhibited its interaction with RXRa and binding

of FXR/RXRa heterodimer to the DNA (Figure 3). Therefore, deace-

tylation of FXR by SIRT1 should increase binding of this hetero-

dimer to the promoter. Indeed, adenoviral-mediated overexpres-

sion of flag-SIRT1 significantly increased association of FXR and

RXRa with the SHP promoter chromatin in cells treated with

GW4064 (Figures 5D–5F). Further, in CoIP assays, interaction of

FXR with RXRa was substantially increased in cells overexpress-

ing SIRT1 (Figure 5G). Consistent with the histone deacetylation

activity of SIRT1 (Vaquero et al., 2006), acetylated H3 levels were

substantially decreased in cells overexpressing SIRT1 (Figure 5E).

These results demonstrate that SIRT1 increases FXR/RXRa

interaction and binding of this heterodimer to the promoter

chromatin.

SIRT1 Decreases the Stability of FXR
Mutation of K157 and K217 reduced acetylation of FXR and

decreased its stability (Figure 2C); therefore, deacetylation of

FXR by SIRT1 should destabilize FXR. As expected, expression

of SIRT1 increased the degradation rate of FXR (Figures 5H, 5I,

and S12). These results suggest that SIRT1 deacetylates FXR,

which increases the degradation of FXR in hepatocytes.

SIRT1 and p300 Reciprocally Modulate FXR
Transactivation
In previous cell-based reporter studies, we observed that p300

increased FXR transactivation of the SHP gene (Fang et al.,

2008). Therefore, a deacetylase, such as SIRT1, should have the

opposite effect. Consistent with previous studies, cotransfection

of increasing amounts of expression plasmids for p300, but not

of the inactive p300 mutant, increased FXR transactivation

(Figure 5J, lanes 3–9). In contrast, increasing amounts of SIRT1

progressively decreased the p300-enhanced transactivation,

whereas an inactive SIRT1 mutant had smaller effects (Figure 5J,

lanes 6 and 10–15). Similar results were observed with the natural

Shp promoter-luc reporter (Figure 5K). These data, together with

acetylation studies and chromatin IP studies, suggest that p300

and SIRT1 reciprocally regulate FXR activity by modulating acety-

lation levels of both FXR and histones. Acetylation of histones at

the promoter is likely responsible for increased gene transcription.

In contrast, the increased acetylation of FXR by p300 may act to

limit and reverse the increased transactivation by inhibiting the

interaction with RXRa and binding to DNA.

Downregulation of SIRT1 Increases FXR Acetylation
with Deleterious Metabolic Outcomes
To directly determine whether acetylation levels of FXR in vivo

are dependent on SIRT1, we infected mice with Ad-siSIRT1

to downregulate SIRT1. Endogenous SIRT1 mRNA and protein

levels were decreased by siSIRT1 expression (Figures 6A, 6B,

and 6E). Acetylation levels of endogenous hepatic FXR were

markedly elevated in mice infected with Ad-siSIRT1

(Figure 6C). Furthermore, the interaction of endogenous FXR

with RXRa in these mice was decreased as expected upon

increased FXR acetylation (Figure 6D). Also consistent with

results from cell studies (Figure 5), Shp mRNA levels were slightly

but significantly increased in mice infected with Ad-siSIRT1

(Figure 6E). Because overexpression of SIRT1 or SIRT1 activa-

tion by resveratrol, a polyphenolic SIRT1 activator, showed

beneficial gene expression patterns and improved metabolic

profiles (Baur et al., 2006; Lagouge et al., 2006; Rodgers and

Puigserver, 2007), its downregulation would be expected to

have deleterious effects. Indeed, downregulation of SIRT1 re-

sulted in increased mRNA levels of SREBP-1c and FAS involved

in hepatic lipogenesis and decreased mRNA levels of SR-B1 and

ABCA1 involved in cholesterol transport (Figure 6E). We and

others showed that PGC-1a is an important coactivator for regu-

lation of the Cyp7a1 and Cyp8b1 genes (Bhalla et al., 2004; Miao

et al., 2006; Shin et al., 2003), which encode key enzymes in

hepatic bile acid biosynthesis. Consistent with these findings,

mRNA levels of Cyp7a1 and Cyp8b1 were significantly

decreased in mice infected with Ad-siSIRT1 (Figure 6E). The

mRNA levels of hepatic bile acid transporters, BSEP and

MRP2, were significantly decreased. The bile acid pool size

was also decreased as expected from these changes in gene

expression (Figure 6F). Serum VLDL and LDL levels were signif-

icantly elevated, and HDL levels were markedly decreased,

leading to a deleterious proatherogenic serum lipid profile (Fig-

ure 6G). These results indicate that SIRT1 decreases FXR acet-

ylation levels in vivo and further support the idea that decreased

SIRT1 activity and elevated FXR acetylation correlate with dele-

terious metabolic outcomes.

Elevated FXR Acetylation Levels in Metabolic
Disease Mice
To test whether acetylated FXR levels are altered in metabolic

disease states, we performed acetylation studies in two mouse

models of obesity and type II diabetes, the leptin-deficient

ob/ob mice and mice fed chronic western-style diet (WD). Acet-

ylation of FXR was substantially increased in the ob/ob mice,

although the acetylated FXR was barely separated from a strong

nonspecific band due to IgG (Figures 6H and 6I). To reduce the

amount of the IgG band, we eluted flag-FXR bound to M2

agarose using flag-peptide, and again, the level of acetylated

flag-FXR was substantially higher in the ob/ob mice (Figure S13).

Consistent with elevated FXR acetylation levels, the interaction

of FXR with p300 was increased, whereas interaction with

SIRT1 was decreased in ob/ob mice (Figure 6J). Elevated FXR

acetylation levels were also detected in mice chronically fed

WD compared to mice fed normal chow (Figure S14). Because

acetylated FXR levels were elevated in two different mouse

models of metabolic diseases, it is consistent with the idea

that elevated FXR acetylation underlie metabolic disorders.

FXR Acetylation Levels in Normal Physiology
and Pathophysiology
Finally, we compared the modulation of FXR acetylation by

normal physiological stimuli, fasting and feeding, and by meta-

bolic disease conditions using WD mice as a model. FXR acety-

lation levels were slightly but significantly increased in mice refed

after overnight fasting (Figures 6K and 6L). Remarkably, FXR

acetylation levels were dramatically elevated in WD mice

compared to mice fed normal chow (Figures 6K and 6L). Consis-

tent with roles of SIRT1 in FXR deacetylation from cell studies

(Figure 4), hepatic overexpression of SIRT1 in these WD mice

substantially reduced the FXR acetylation levels (Figure 6M).
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Figure 6. Elevated FXR Acetylation Levels in Metabolic Disease States

(A–G) Mice were infected with either Ad-empty or Ad-siSIRT1, which expresses SIRT1 siRNA.

(A) Experimental outlines.

(B) Levels of endogenous SIRT1 and exogenous GFP were detected. Results from two mice are shown.

(C) Endogenous FXR was immunoprecipitated, and acetylated FXR was detected. Results from two mice are shown.

(D) CoIP assays to detect FXR/RXRa interaction.

(E) The mRNA levels of the indicated genes were determined by q-RTPCR. The mean and SEM are shown. n = 3.
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Treatment with resveratrol resulted in beneficial gene expres-

sion patterns and improved an overall metabolic outcome, partly

due to deacetylation of PGC-1a in metabolic disease model mice

(Baur et al., 2006; Lagouge et al., 2006). It is possible that activa-

tion of SIRT1 might also decrease the abnormally high levels of

acetylated FXR in these disease models, which could contribute

to the beneficial effects. To test this possibility, ob/ob mice were

treated daily with resveratrol for 1 week, and acetylated FXR

levels and metabolic studies were performed. Treatment with

resveratrol substantially decreased acetylated FXR levels in

ob/ob mice (Figure 6N). Further, treatment with resveratrol signif-

icantly decreased Shp mRNA levels and elevated bile acid pool

sizes in WD mice (Figures S15 and S16). These results, together,

demonstrate that acetylated FXR levels are dynamically regu-

lated by p300 and SIRT1 under normal conditions but constitu-

tively elevated in metabolic disease model mice and further

suggest that elevated acetylated FXR levels reduce FXR activity,

which is associated with deleterious outcomes in metabolic

disease states.

DISCUSSION

We demonstrate in these studies that acetylation of FXR nor-

mally dynamically modulates its activity and that abnormally

elevated levels of acetylated FXR are present in mouse models

of metabolic disease. The level of FXR acetylation is reciprocally

regulated by the acetylase p300 and the deacetylase SIRT1. The

major site of FXR acetylated by p300 is K217 within the hinge

domain, and acetylation was also detected at K157 within the

DNA-binding domain. Mutation of K157 and K217 resulted in

decreased stability of FXR but increased heterodimerization

with RXRa, binding to DNA, and transactivation activity, indi-

cating that acetylation of FXR increases its stability but inhibits

its DNA binding and transactivation activity. Downregulation of

endogenous SIRT1 in mouse liver increased acetylation levels

of endogenous FXR, demonstrating that SIRT1 affected FXR

acetylation in vivo. Of interest, downregulation of SIRT1 was

associated with deleterious gene expression patterns and meta-

bolic outcomes. Consistent with this observation, FXR acetyla-

tion levels were highly elevated in ob/ob mice and high-fat

western-style diet mice. Furthermore, activation of SIRT1 by

treatment with resveratrol, which has been shown to improve

metabolic outcomes (Baur et al., 2006; Lagouge et al., 2006),

reduced the elevated FXR acetylation in these metabolic disease

mice. Our results suggest an intriguing connection between

elevated FXR acetylation and decreased FXR activity in animals

with deleterious metabolic profiles.

Based on results from the present and published studies (Fang

et al., 2008), acetylation is likely to play a complex role in gene

regulation by FXR (Figure 7). Upon activation, FXR recruits

p300 to target gene promoters, and SIRT1 is dissociated, result-

ing in increased acetylation of FXR and histones. Acetylation of

histones by p300 is associated with gene activation and is prob-

ably the major factor in the activation of the FXR target gene, as

we previously demonstrated (Fang et al., 2008). At the same

time, however, acetylation of FXR itself inhibits the activity of

FXR. This seemingly paradoxical effect may be important to limit

or terminate the response to a stimulus response, which is

essential in a dynamically regulated system. Once the acetylated

FXR is released from the promoter, FXR is deacetylated by

SIRT1, which then either interacts with RXRa and rebinds to

the DNA as a heterodimer or is degraded via the ubiquitin-pro-

teasomal degradation pathway. In the absence of further stimu-

lation, SIRT1 is recruited to the target genes by the unliganded

FXR, and histones are deacetylated so that gene expression

remains at a low basal level. Importantly, acetylation and deace-

tylation of FXR appears to be a dynamic process under normal

physiological conditions so that the activity of FXR is tightly

balanced by the opposing actions of p300 and SIRT1.

In contrast to normal mice, in mice with abnormal metabolic

profiles, such as ob/ob mice, western diet mice, or mice ex-

pressing siSIRT1, the FXR acetylation levels are constitutively

and highly elevated. The increased acetylation of FXR may be

caused by low activity of SIRT1 because downregulation of

SIRT1 in normal mice led to deleterious metabolic outcomes.

In metabolic disease states, continuously acetylated FXR would

show impaired interaction with RXRa and DNA binding of FXR/

RXRa and, subsequently, decreased FXR transactivation of its

metabolic target genes. This result suggests that the dynamic

acetylation and deacetylation of FXR in normal mice may be

required for activation of the genes, whereas continuously

elevated acetylation in the diseased states blocks activation.

Therefore, our studies provide a potential intriguing correlation

between elevated FXR acetylation, decreased FXR activities,

and deleterious metabolic effects in metabolic disease states.

The correlation of elevated FXR acetylation and metabolic

disease suggests that activation of SIRT1 should have beneficial

effects. Indeed, activation of SIRT1 by resveratrol has already

been demonstrated to have beneficial metabolic effects in mouse

models of metabolic disease by enhancing mitochondria function

(F) The total amount of bile acids in liver, gall bladder, and intestines was measured as described in the Experimental Procedures. Dots indicate measurements

from three mice in each group. The mean and SEM are shown. n = 3. Statistical significance was determined by Student’s t test.

(G) Serum cholesterol levels were measured, and the mean and SEM are shown. The mean and SEM are shown. n = 3. Statistical significance was determined by

Student’s t test. *p < 0.01.

(H–J) Normal or ob/ob mice were infected with Ad-flag-FXR as described in the Experimental Procedures.

(H) Flag-FXR was immunoprecipitated from liver extracts, and acetylated flag-FXR in the immunoprecipitates was detected.

(I) Band intensities of acetylated flag-FXR were quantified using ImageJ. The values from control mice were set to 1. The mean and SEM are shown. n = 4.

(J) CoIP assays were performed to detect FXR/p300 (left) and FXR/SIRT1 (right).

(K) Mice were fasted overnight or fasted overnight and then refed for 1 hr. Mice were fed either normal chow or western-style diet for 16 weeks. Acetylated endog-

enous FXR levels were detected.

(L) Band intensities of acetylated FXR were quantified, and the values from fasted mice or mice fed normal chow were set to 1. The mean and SEM are shown.

Statistical significance was determined by Student’s t test.

(M) Acetylated endogenous FXR levels were detected in western-style diet mice infected with Ad-empty or Ad-flag-SIRT1.

(N) The ob/ob mice injected with Ad-flag-FXR were treated daily with resveratrol for 1 week, and livers were collected for acetylation assays as in Figure 6H.
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through activation of PGC-1a (Baur et al., 2006; Lagouge et al.,

2006). Our observation that activation of resveratrol or overex-

pression of SIRT1 results in decreased acetylation of FXR in

disease model mice suggests that effects of resveratrol on FXR,

in addition to PGC-1a, may also contribute to improved metabolic

outcomes. These results are consistent with our previous studies

showing that downregulation of p300, which should reduce acet-

ylation of FXR, altered expression of metabolic target genes

involved in lipoprotein and glucose metabolism, such that bene-

ficial lipid and glucose profiles would be expected (Fang et al.,

2008). In addition to the direct effects of SIRT1 on FXR, SIRT1

may also indirectly increase FXR activity by activating PGC-1a

(Baur et al., 2006; Rodgers et al., 2008). PGC-1a has been shown

to coactivate FXR transactivation and increase FXR expression

(Zhang et al., 2004). It is possible that SIRT1-mediated PGC-1a

coactivation and FXR deacetylation synergistically regulate

hepatic FXR activity under physiological conditions.

It has been demonstrated that bile acids not only activate FXR

signaling by binding to the ligand-binding domain of FXR, but

also activate upstream cellular kinase signaling pathways,

such as protein kinase B (PKB, Akt), PKC, JNK, and ERK kinases

in hepatocytes (Dent et al., 2005; Gineste et al., 2008; Hylemon

et al., 2009; Miao et al., 2009). We recently demonstrated that

bile acids increase the stability of SHP, a well-known FXR target,

by inhibiting ubiquitin-proteasomal degradation in an ERK-

dependent manner (Miao et al., 2009). A recent study showed

that inhibition of PKC impaired ligand-mediated regulation of

FXR activity of its target genes by blocking FXR interaction

with PGC-1a (Gineste et al., 2008). Of interest, one of the two

reported PKC sites in FXR, S154, is located near K157, an acet-

ylation site in FXR. Therefore, it will be interesting to know

whether phosphorylation of FXR by PKB or PKC affects acetyla-

tion of FXR and whether impaired signaling pathways are

associated with elevated FXR acetylation in metabolic disease

states.

Although K217 was identified as the major acetylation site for

FXR, acetylation at K157 was also observed. Recent studies

demonstrated that acetylation of p53 at different lysine residues

affected different biological processes; for example, acetylation

of p53 at K120 in the DNA-binding domain by Tip60 acetylase is

crucial for apoptosis but is dispensable for cell-cycle arrest

(Tang et al., 2006). Likewise, acetylation at K157 and K217 in

FXR may have different functional outcomes and may selectively

play a role in regulation of subsets of target genes involved in

different metabolic pathways, such as cholesterol/bile acids,

fatty acid, and glucose. Therefore, it will be important to deter-

mine whether acetylation in the disease models is generally

increased or whether acetylation at specific sites is increased

and whether FXR acetylated at different sites is recruited in a

gene-selective manner.

In this study, we demonstrate that FXR acetylation is tightly

and reciprocally regulated by p300 and SIRT1 and is critical for

activation of FXR target genes in response to FXR signaling

under normal conditions. Further, this dynamic regulation of

FXR acetylation is disrupted in metabolic disease model mice,

resulting in constitutively elevated FXR acetylation. We propose

that small molecules that inhibit FXR acetylation by increasing

SIRT1 or decreasing p300 activity may be promising therapeutic

agents for treatment of metabolic disorders, such as fatty liver,

diabetes, and obesity.

Figure 7. A Proposed Model of FXR Acetylation in

Normal and Disease States

(A) In normal conditions, SIRT1 and FXR are associated

with promoters of FXR target genes, such as the SHP

gene. When FXR is activated by agonists, p300 is recruited

and SIRT1 is dissociated, which results in increased acet-

ylation of histone H3 and, subsequently, transcriptional

activation. At the same time, the process for limiting the

stimulated activity is initiated by acetylation of FXR by

p300, which impairs FXR interaction with RXRa and DNA

binding, resulting in dissociation of FXR from the

promoter. Later, SIRT1 deacetylates FXR, which

decreases FXR acetylation levels. The deacetylated FXR

is either degraded via the ubiquitin-proteasomal pathway

or heterodimerizes with RXRa and rebinds to the target

gene promoter with SIRT1, resulting in deacetylation of

histones and low basal levels of gene expression. The

activity of FXR is tightly balanced by the opposing actions

of p300 and SIRT1 via FXR and histone acetylation.

(B) In contrast, in metabolic disease states, FXR acetyla-

tion levels are constitutively highly elevated, probably

due to abnormally high p300 activity and low SIRT1

activity. Constitutively elevated acetylation of FXR inhibits

FXR activity, at least in part, by inhibiting FXR interaction

with RXRa and subsequently binding of FXR/RXR to the

DNA. Deacetylation of the acetylated FXR may be required

for its further activity in normal mice but does not occur in

the diseased mice because of low expression and activity

of SIRT1.
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EXPERIMENTAL PROCEDURES

Materials

Antibodies against FXR, RXR, p300, GFP, lamin, tubulin, and RNA polymerase

II were purchased from Santa Cruz Biotech. M2 antibody was purchased from

Sigma and SIRT1, and acetylated H3 (K9/K14) antibodies were from Upstate

Biotech. Acetyl lysine antibody was purchased from Cell Signaling, Inc.

GW4046 was a kind gift from T.M. Willson. TSA, nicotinamide (Nam), and

resveratrol were purchased from Sigma, Inc.

Plasmid and Adenoviral Vector Constructs

Acetylation-defective and mimic flag-FXR mutants were constructed by

site-directed mutagenesis (Stratagene, Inc.) and confirmed by sequencing.

Flag-FXR in this manuscript refers to 3flag-human FXR. Ad-flag-FXR has

been previously described (Fang et al., 2008).

Animal Experiments

BALB/c male mice were fed with chow supplemented with 0.5% CA (Har-

land Teklad TD05271) for 3–6 hr or treated with GW4064 (30 mg/kg in

corn oil) by intraperitoneal injection, and 1–3 hr later, livers were collected

for further analyses. BALB/c mice were fasted overnight or refed for 1 hr

after overnight fasting, and livers were collected for further analyses. About

8- to 12-week-old ob/ob mice or congenic C57BL/6J mice were tail vein

injected with Ad-flag-FXR and then daily and orally treated with resveratrol

(50 mg/kg body weight) for 1 week. BALB/c mice were fed normal chow

or high-fat western style chow for 16 weeks and then infected with control

Ad-empty or Ad-flag-FXR or daily and orally treated with resveratrol for

1 week. Recombinant adenovirus was injected via the tail vein of mice as

previously described (Fang et al., 2007; Miao et al., 2009). All of the animal

use and adenoviral protocols were approved by the Institutional Animal Care

and Use and Institutional Biosafety Committees at University of Illinois at

Urbana-Champaign and were in accordance with National Institutes of

Health guidelines.

Tandem Mass Spectrometry Analysis

Flag-FXR was expressed in HepG2 cells (three plates of 15 cm per group) by

adenoviral infection. Flag-FXR was purified by binding to M2 agarose and

subjected to tandem mass (MS/MS) spectrometry analysis as described

previously (Miao et al., 2009).

Acetylation and Deacetylation Assays

HepG2 cells (ATCC HB8065) were maintained in Dulbecco’s modified Eagle’s

medium (DMEM)/F12 (1:1) medium. Cos-1 cells were maintained in DMEM

medium. Cells were infected with Ad-flag-FXR as previously described (Fang

et al., 2008). For acetylation assays in cells, Cos-1 cells were cotransfected

with expression plasmids of flag-FXR along with p300. Cells were treated

with 200 nM of GW4064, 500 nM of TSA, and 10 mM of Nam for 2–5 hr. Flag-

FXR or endogenous FXR in cells or mouse liver was immunoprecipitated

from freshly prepared cell or liver extracts at 4�C for 2 hr in buffer (50 mM

Tris-HCl [pH 7.6], 150 mM NaCl, 5 mM EDTA, 1% NP40, and 0.1% SDS).

Acetylated FXR was detected by western analyses. For in vitro assays, acety-

lated flag-FXR or GST-flag-FXR was incubated with purified GST or GST-SIRT1

in the presence of 50 mM NAD+ in deacetylation buffer (Tris-HCl [pH 8.8], 5%

glycerol, 50 mM NaCl, 4 mM MgCl2, 1 mM DTT) at 37�C for 1 hr as previously

described (Fang et al., 2008).

Protein Interaction Assays

Chromatin IP (ChIP), coimmunoprecipitation (CoIP), and GST pull-down

assays were performed as described previously (Fang et al., 2007; Kemper

et al., 2004; Miao et al., 2009). Gel mobility shift assays were done as described

(Bhalla et al., 2004; Miao et al., 2006) with some modifications. In brief, a

26-mer oligonucleotide containing the FXRE sequence present in the SHP

promoter was labeled with g-32P and gel purified. Increasing amounts of

flag-FXR or Cos-1 whole-cell extracts were incubated with purified flag-

RXRa and incubated at RT for 10 min. The complexes were analyzed using

nondenaturing acrylamide gel electrophoresis.

Quantification of mRNA

RNA was isolated from liver or cultured cells, and the levels of mRNA were

determined by quantitative reverse transcriptase-PCR (qRT-PCR) as previ-

ously described (Miao et al., 2009).

Bile Acid Pool Size and Serum Cholesterol Levels Measurement

The total amount of bile acids from gall bladder, liver, and entire intestines was

measured by colorimetric analysis (Trinity Biotech). Serum cholesterol levels

were measured using a HDL and LDL/VLDL cholesterol quantification kit

(Biovision, Inc).

SUPPLEMENTAL DATA

Supplemental Data include 16 figures and can be found with this article online at

http://www.cell.com/cell-metabolism/supplemental/S1550-4131(09)00297-6.

ACKNOWLEDGMENTS

We are grateful to P. Puigserver for Ad-siSIRT1 and Ad-flag-SIRT1, P.

Edwards for FXR deletion constructs, M. Leid for GST-SIRT1 constructs, R.

Sato for plasmids CMV-3 flag-FXR and G4DBD-FXR, W. Gu and T. Finkel for

plasmids for SIRT1 WT and mutant, M. Ananthanarayanan for (FXRE)3-tk-

luc, Yoon K. Lee for the Shp-luc reporter plasmid, and T. Imamura for the

HA-Ub plasmid. Special thanks to Dr. T.M. Willson for providing GW4064.

We also thank B. Kemper for helpful discussions. This study was supported

by NIH grants CA103867 and CA124760 to C.-M.C. and NIH DK062777, NIH

DK80032, and ADA basic research award to J.K.K. This project has been

funded in whole or in part with federal funds from the National Cancer Institute,

National Institutes of Health under Contract N01-CO-12400 to T.D.V.

Received: May 5, 2009

Revised: August 7, 2009

Accepted: September 16, 2009

Published: November 3, 2009

REFERENCES

Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A.,

Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol

improves health and survival of mice on a high-calorie diet. Nature 444,

337–342.

Bhalla, S., Ozalp, C., Fang, S., Xiang, L., and Kemper, J.K. (2004). Ligand-

activated pregnane X receptor interferes with HNF-4 signaling by targeting

a common coactivator PGC-1alpha. Functional implications in hepatic choles-

terol and glucose metabolism. J. Biol. Chem. 279, 45139–45147.

Cariou, B., and Staels, B. (2007). FXR: a promising target for the metabolic

syndrome? Trends Pharmacol. Sci. 28, 236–243.

Daitoku, H., Hatta, M., Matsuzaki, H., Aratani, S., Ohshima, T., Miyagishi, M.,

Nakajima, T., and Fukamizu, A. (2004). Silent information regulator 2 potenti-

ates Foxo1-mediated transcription through its deacetylase activity. Proc.

Natl. Acad. Sci. USA 101, 10042–10047.

Dent, P., Fang, Y., Gupta, S., Studer, E., Mitchell, C., Spiegel, S., and Hylemon,

P.B. (2005). Conjugated bile acids promote ERK1/2 and AKT activation via

a pertussis toxin-sensitive mechanism in murine and human hepatocytes.

Hepatology 42, 1291–1299.

Fang, S., Miao, J., Xiang, L., Ponugoti, B., Treuter, E., and Kemper, J.K. (2007).

Coordinated recruitment of histone methyltransferase G9a and other

chromatin modifying enzymes in SHP-mediated regulation of hepatic bile

acid metabolism. Mol. Cell. Biol. 27, 1407–1424.

Fang, S., Tsang, S., Jones, R., Ponugoti, B., Yoon, H., Wu, S.Y., Chiang, C.M.,

Willson, T.M., and Kemper, J.K. (2008). The P300 acetylase is critical for

ligand-activated farnesoid X receptor (FXR) induction of SHP. J. Biol. Chem.

283, 35086–35095.

Gineste, R., Sirvent, A., Paumelle, R., Helleboid, S., Aquilina, A., Darteil, R.,

Hum, D.W., Fruchart, J.C., and Staels, B. (2008). Phosphorylation of farnesoid

Cell Metabolism

FXR Acetylation in Normal and Disease States

Cell Metabolism 10, 392–404, November 4, 2009 ª2009 Elsevier Inc. 403

http://www.cell.com/cell-metabolism/supplemental/S1550-4131(09)00297-6


X receptor by protein kinase C promotes its transcriptional activity. Mol.

Endocrinol. 22, 2433–2447.

Goodwin, B., Jones, S.A., Price, R.R., Watson, M.A., McKee, D.D., Moore,

L.B., Galardi, C., Wilson, J.G., Lewis, M.C., Roth, M.E., et al. (2000). A regula-

tory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile

acid biosynthesis. Mol. Cell 6, 517–526.

Guarente, L. (2007). Sirtuins in aging and disease. Cold Spring Harb. Symp.

Quant. Biol. 72, 483–488.

Huang, W., Ma, K., Zhang, J., Qatanani, M., Cuvillier, J., Liu, J., Dong, B.,

Huang, X., and Moore, D.D. (2006). Nuclear receptor-dependent bile acid

signaling is required for normal liver regeneration. Science 312, 233–236.

Hylemon, P.B., Zhou, H., Pandak, W.M., Ren, S., Gil, G., and Dent, P. (2009).

Bile acids as regulatory molecules. J. Lipid Res. 50, 1509–1520.

Inagaki, T., Moschetta, A., Lee, Y.K., Peng, L., Zhao, G., Downes, M., Yu, R.T.,

Shelton, J.M., Richardson, J.A., Repa, J.J., et al. (2006). Regulation of antibac-

terial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl.

Acad. Sci. USA 103, 3920–3925.

Kalaany, N.Y., and Mangelsdorf, D.J. (2006). LXRS and FXR: the yin and yang

of cholesterol and fat metabolism. Annu. Rev. Physiol. 68, 159–191.

Kemper, J.K., Kim, H., Miao, J., Bhalla, S., and Bae, Y. (2004). Role of

a mSin3A-Swi/Snf chromatin remodeling complex in the feedback repression

of bile acid biosynthesis by SHP. Mol. Cell. Biol. 24, 7707–7719.

Kitamura, Y.I., Kitamura, T., Kruse, J.P., Raum, J.C., Stein, R., Gu, W., and

Accili, D. (2005). FoxO1 protects against pancreatic beta cell failure through

NeuroD and MafA induction. Cell Metab. 2, 153–163.

Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin,

F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol

improves mitochondrial function and protects against metabolic disease by

activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122.

Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A., and Zhang, Y. (2006). FXR,

a multipurpose nuclear receptor. Trends Biochem. Sci. 31, 572–580.

Lerin, C., Rodgers, J.T., Kalume, D.E., Kim, S.H., Pandey, A., and Puigserver,

P. (2006). GCN5 acetyltransferase complex controls glucose metabolism

through transcriptional repression of PGC-1alpha. Cell Metab. 3, 429–438.

Li, X., Zhang, S., Blander, G., Tse, J.G., Krieger, M., and Guarente, L. (2007).

SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol.

Cell 28, 91–106.

Lu, T.T., Makishima, M., Repa, J.J., Schoonjans, K., Kerr, T.A., Auwerx, J., and

Mangelsdorf, D.J. (2000). Molecular basis for feedback regulation of bile acid

synthesis by nuclear receptors. Mol. Cell 6, 507–515.

Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and

Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival

under stress. Cell 107, 137–148.

Ma, K., Saha, P.K., Chan, L., and Moore, D.D. (2006). Farnesoid X receptor is

essential for normal glucose homeostasis. J. Clin. Invest. 116, 1102–1109.

Mangelsdorf, D.J., and Evans, R.M. (1995). The RXR heterodimers and orphan

receptors. Cell 83, 841–850.

Miao, J., Fang, S., Bae, Y., and Kemper, J.K. (2006). Functional inhibitory

cross-talk between car and HNF-4 in hepatic lipid/glucose metabolism is

mediated by competition for binding to the DR1 motif and to the common

coactivators, GRIP-1 and PGC-1alpha. J. Biol. Chem. 281, 14537–14546.

Miao, J., Xiao, Z., Kanamaluru, D., Min, G., Yau, P.M., Veenstra, T.D., Ellis, E.,

Strom, S., Suino-Powell, K., Xu, H.E., and Kemper, J.K. (2009). Bile acid

signaling pathways increase stability of Small Heterodimer Partner (SHP) by

inhibiting ubiquitin-proteasomal degradation. Genes Dev. 23, 986–996.

Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma,

Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses

forkhead transcription factors. Cell 116, 551–563.

Rodgers, J.T., and Puigserver, P. (2007). Fasting-dependent glucose and lipid

metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. USA 104,

12861–12866.

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puig-

server, P. (2005). Nutrient control of glucose homeostasis through a complex

of PGC-1alpha and SIRT1. Nature 434, 113–118.

Rodgers, J.T., Lerin, C., Gerhart-Hines, Z., and Puigserver, P. (2008). Meta-

bolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett.

582, 46–53.

Rosenfeld, M.G., Lunyak, V.V., and Glass, C.K. (2006). Sensors and signals:

a coactivator/corepressor/epigenetic code for integrating signal-dependent

programs of transcriptional response. Genes Dev. 20, 1405–1428.

Shin, D.J., Campos, J.A., Gil, G., and Osborne, T.F. (2003). PGC-1alpha acti-

vates CYP7A1 and bile acid biosynthesis. J. Biol. Chem. 278, 50047–50052.

Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G., and Gonzalez, F.J.

(2000). Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid

and lipid homeostasis. Cell 102, 731–744.

Sinclair, D.A., Lin, S.J., and Guarente, L. (2006). Life-span extension in yeast.

Science 312, 195–197.

Tang, Y., Luo, J., Zhang, W., and Gu, W. (2006). Tip60-dependent acetylation

of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol.

Cell 24, 827–839.

Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W.,

Serrano, L., Sternglanz, R., and Reinberg, D. (2006). SirT2 is a histone deace-

tylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20,

1256–1261.

Willson, T.M., Jones, S.A., Moore, J.T., and Kliewer, S.A. (2001). Chemical

genomics: functional analysis of orphan nuclear receptors in the regulation

of bile acid metabolism. Med. Res. Rev. 21, 513–522.

Zhang, Y., Castellani, L.W., Sinal, C.J., Gonzalez, F.J., and Edwards, P.A.

(2004). Peroxisome proliferator-activated receptor-gamma coactivator 1alpha

(PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear

receptor FXR. Genes Dev. 18, 157–169.

Zhang, Y., Lee, F.Y., Barrera, G., Lee, H., Vales, C., Gonzalez, F.J., Willson,

T.M., and Edwards, P.A. (2006). Activation of the nuclear receptor FXR

improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl.

Acad. Sci. USA 103, 1006–1011.

Cell Metabolism

FXR Acetylation in Normal and Disease States

404 Cell Metabolism 10, 392–404, November 4, 2009 ª2009 Elsevier Inc.


	FXR Acetylation is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States
	Recommended Citation
	Authors

	FXR Acetylation Is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States
	Introduction
	Results
	K217 in the Hinge Region of FXR Is the Major Acetylation Site
	Acetylation of FXR Increases Its Stability
	Mutation of FXR Acetylation Sites Increases Transactivation
	Mutation of K157 and K217 Increases Binding of FXR/RXRalpha Heterodimer to DNA
	FXR Acetylation Inhibits FXR/RXRalpha Heterodimerization
	SIRT1 Is Associated with FXR in Mouse Liver In Vivo
	SIRT1 Directly Interacts with and Deacetylates FXR
	FXR Agonist Treatment Results in Dissociation of SIRT1 from the Shp Promoter
	SIRT1 Increases Association of FXR/RXRalpha with the Promoter
	SIRT1 Decreases the Stability of FXR
	SIRT1 and p300 Reciprocally Modulate FXR Transactivation
	Downregulation of SIRT1 Increases FXR Acetylation with Deleterious Metabolic Outcomes
	Elevated FXR Acetylation Levels in Metabolic Disease Mice
	FXR Acetylation Levels in Normal Physiology and Pathophysiology

	Discussion
	Experimental Procedures
	Materials
	Plasmid and Adenoviral Vector Constructs
	Animal Experiments
	Tandem Mass Spectrometry Analysis
	Acetylation and Deacetylation Assays
	Protein Interaction Assays
	Quantification of mRNA
	Bile Acid Pool Size and Serum Cholesterol Levels Measurement

	Supplemental Data
	Acknowledgments
	References


