1,417 research outputs found
Beyond Strong Coupling in a Massively Multimode Cavity
The study of light-matter interaction has seen a resurgence in recent years,
stimulated by highly controllable, precise, and modular experiments in cavity
quantum electrodynamics (QED). The achievement of strong coupling, where the
coupling between a single atom and fundamental cavity mode exceeds the decay
rates, was a major milestone that opened the doors to a multitude of new
investigations. Here we introduce multimode strong coupling (MMSC), where the
coupling is comparable to the free spectral range (FSR) of the cavity, i.e. the
rate at which a qubit can absorb a photon from the cavity is comparable to the
round trip transit rate of a photon in the cavity. We realize, via the circuit
QED architecture, the first experiment accessing the MMSC regime, and report
remarkably widespread and structured resonance fluorescence, whose origin
extends beyond cavity enhancement of sidebands. Our results capture complex
multimode, multiphoton processes, and the emergence of ultranarrow linewidths.
Beyond the novel phenomena presented here, MMSC opens a major new direction in
the exploration of light-matter interactions.Comment: 14 pages, 11 figures. References added, typos correcte
Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo
Commissural axons generally cross the midline only once. In the Drosophila nerve cord and mouse spinal cord, commissural axons are guided by Slit only after they cross the midline, where Slit prevents these axons from recrossing the midline. In the developing corpus callosum, Slit2 expressed by the glial wedge guides callosal axons before they cross the midline, as they approach the corticoseptal boundary. These data highlighted a potential difference between the role of Slit2 in guiding commissural axons in the brain compared with the spinal cord. Here, we investigate whether Slit2 also guides callosal axons after they cross the midline. Because such questions cannot be addressed in conventional gene knock-out animals, we used in utero injections of antisense oligonucleotides to specifically deplete Slit2 on only one side of the brain. We used this technique together with a novel in vitro assay of hemisected brain slices to specifically analyze postcrossing callosal axons. We find that in the brain, unlike the spinal cord, Slit2 mediates both precrossing and postcrossing axonal guidance. Depletion of Slit2 on one side of the brain causes axons to defasciculate and, in some cases, to aberrantly enter the septum. Because these axons do not recross the midline, we conclude that the principle function of Slit2 at the cortical midline maybe to channel the axons along the correct path and possibly repel them away from the midline. We find no evidence that Slit2 prevents axons from recrossing the midline in the brain
Hadronic Vacuum Polarization and the Lamb Shift
Recent improvements in the determination of the running of the fine-structure
constant also allow an update of the hadronic vacuum-polarization contribution
to the Lamb shift. We find a shift of -3.40(7) kHz to the 1S level of hydrogen.
We also comment on the contribution of this effect to the determination by
elastic electron scattering of the r.m.s. radii of nuclei.Comment: 7 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty
require
Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition
Undernutrition in children is a pressing global health problem, manifested in part by impaired linear growth (stunting). Current nutritional interventions have been largely ineffective in overcoming stunting, emphasizing the need to obtain better understanding of its underlying causes. Treating Bangladeshi children with severe acute malnutrition with therapeutic foods reduced plasma levels of a biomarker of osteoclastic activity without affecting biomarkers of osteoblastic activity or improving their severe stunting. To characterize interactions among the gut microbiota, human milk oligosaccharides (HMOs), and osteoclast and osteoblast biology, young germ-free mice were colonized with cultured bacterial strains from a 6-mo-old stunted infant and fed a diet mimicking that consumed by the donor population. Adding purified bovine sialylated milk oligosaccharides (S-BMO) with structures similar to those in human milk to this diet increased femoral trabecular bone volume and cortical thickness, reduced osteoclasts and their bone marrow progenitors, and altered regulators of osteoclastogenesis and mediators of Th2 responses. Comparisons of germ-free and colonized mice revealed S-BMO-dependent and microbiota-dependent increases in cecal levels of succinate, increased numbers of small intestinal tuft cells, and evidence for activation of a succinate-induced tuft cell signaling pathway linked to Th2 immune responses. A prominent fucosylated HMO, 2'-fucosyllactose, failed to elicit these changes in bone biology, highlighting the structural specificity of the S-BMO effects. These results underscore the need to further characterize the balance between, and determinants of, osteoclastic and osteoblastic activity in stunted infants/children, and suggest that certain milk oligosaccharides may have therapeutic utility in this setting
Who Opens Alerts to Physicians? (And Who Doesn’t?)
Background: Electronic medical records (EMR) provide opportunities to implement systems of information flow, such as alerts to providers.
Methods: Within a group practice with an EMR, we conducted a trial of automated alerts to the in-baskets of primary care physicians and staff when patients were discharged from hospital to home. We generated alerts for new medications or monitoring needs. Staff received alerts to schedule office visits. Using EMR “digital crumbs”, we tracked when alerts were viewed. We analyzed the impact of physician age, gender, department, and employment status (full-time, part-time) as well as patient conditions (age, gender, comorbidity, and number of office visits in the previous year) on timely opening.
Results: Of 763 alerts to physicians, 616 (81%) were opened within one day. Characteristics associated with timely opening were age \u3c 50 (OR 1.7, 95% CI 1.1, 2.6) and full-time employment (OR 2.9, 95% CI 1.6, 5.2). Of 1928 alerts to staff, 1173 (61%) were opened within one day. Staff of male physicians were more likely to open the alerts within one day (OR 1.8, 95% CI 1.4, 2.4) as were working for the Family Medicine department (OR 1.9, 95% CI 1.3, 2.6) or a sub-specialty department (OR 16.6, 95% CI 2.3, 122.3). Staff of full-time physicians were less likely to open alerts (OR 0.64, 95% CI 0.47, 0.87). Adjusting for patient characteristics had no impact on results.
Conclusion: Special efforts may be required to reach physicians working part-time and older physicians. Characteristics related to staff opening of alerts are specific to this group practice, but the high level of variability across physician types and departments is likely to be an issue in many settings. Design of a system directed at reaching staff quickly may require in-depth assessment of work flow and communication patterns in clinical department
Isolation of Enteric Glial Cells from the Submucosa and Lamina Propria of the Adult Mouse
The enteric nervous system (ENS) consists of neurons and enteric glial cells (EGCs) that reside within the smooth muscle wall, submucosa and lamina propria. EGCs play important roles in gut homeostasis through the release of various trophic factors and contribute to the integrity of the epithelial barrier. Most studies of primary enteric glial cultures use cells isolated from the myenteric plexus after enzymatic dissociation. Here, a non-enzymatic method to isolate and culture EGCs from the intestinal submucosa and lamina propria is described. After manual removal of the longitudinal muscle layer, EGCs were liberated from the lamina propria and submucosa using sequential HEPES-buffered EDTA incubations followed by incubation in commercially available non-enzymatic cell recovery solution. The EDTA incubations were sufficient to strip most of the epithelial mucosa from the lamina propria, allowing the cell recovery solution to liberate the submucosal EGCs. Any residual lamina propria and smooth muscle was discarded along with the myenteric glia. EGCs were easily identified by their ability to express glial fibrillary acidic protein (GFAP). Only about 50% of the cell suspension contained GFAP+ cells after completing tissue incubations and prior to plating on the poly-D-lysine/laminin substrate. However, after 3 days of culturing the cells in glial cell-derived neurotrophic factor (GDNF)-containing culture media, the cell population adhering to the substrate-coated plates comprised of \u3e95% enteric glia. We created a hybrid mouse line by breeding a hGFAP-Cre mouse to the ROSA-tdTomato reporter line to track the percentage of GFAP+ cells using endogenous cell fluorescence. Thus, non-myenteric enteric glia can be isolated by non-enzymatic methods and cultured for at least 5 days
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
White matter hyperintensities (WMH), also known as white matter lesions, are localised white matter areas that appear hyperintense on MRI scans. WMH commonly occur in the ageing population, and are often associated with several factors such as cognitive disorders, cardiovascular risk factors, cerebrovascular and neurodegenerative diseases. Despite the fact that some links between lesion location and parametric factors such as age have already been established, the relationship between voxel-wise spatial distribution of lesions and these factors is not yet well understood. Hence, it would be of clinical importance to model the distribution of lesions at the population-level and quantitatively analyse the effect of various factors on the lesion distribution model.
In this work we compare various methods, including our proposed method, to generate voxel-wise distributions of WMH within a population with respect to various factors. Our proposed Bayesian spline method models the spatio-temporal distribution of WMH with respect to a parametric factor of interest, in this case age, within a population. Our probabilistic model takes as input the lesion segmentation binary maps of subjects belonging to various age groups and provides a population-level parametric lesion probability map as output. We used a spline representation to ensure a degree of smoothness in space and the dimension associated with the parameter, and formulated our model using a Bayesian framework.
We tested our algorithm output on simulated data and compared our results with those obtained using various existing methods with different levels of algorithmic and computational complexity. We then compared the better performing methods on a real dataset, consisting of 1000 subjects of the UK Biobank, divided in two groups based on hypertension diagnosis. Finally, we applied our method on a clinical dataset of patients with vascular disease.
On simulated dataset, the results from our algorithm showed a mean square error (MSE) value of , which was lower than the MSE value reported in the literature, with the advantage of being robust and computationally efficient. In the UK Biobank data, we found that the lesion probabilities are higher for the hypertension group compared to the non-hypertension group and further verified this finding using a statistical t-test. Finally, when applying our method on patients with vascular disease, we observed that the overall probability of lesions is significantly higher in later age groups, which is in line with the current literature
Improving Rates of Influenza Vaccination Through Electronic Health Record Portal Messages, Interactive Voice Recognition Calls and Patient-Enabled Electronic Health Record Updates: Protocol for a Randomized Controlled Trial
BACKGROUND: Clinical decision support (CDS), including computerized reminders for providers and patients, can improve health outcomes. CDS promoting influenza vaccination, delivered directly to patients via an electronic health record (EHR) patient portal and interactive voice recognition (IVR) calls, offers an innovative approach to improving patient care.
OBJECTIVE: To test the effectiveness of an EHR patient portal and IVR outreach to improve rates of influenza vaccination in a large multispecialty group practice in central Massachusetts.
METHODS: We describe a nonblinded, randomized controlled trial of EHR patient portal messages and IVR calls designed to promote influenza vaccination. In our preparatory phase, we conducted qualitative interviews with patients, providers, and staff to inform development of EHR portal messages with embedded questionnaires and IVR call scripts. We also provided practice-wide education on influenza vaccines to all physicians and staff members, including information on existing vaccine-specific EHR CDS. Outreach will target adult patients who remain unvaccinated for more than 2 months after the start of the influenza season. Using computer-generated randomization and a factorial design, we will assign 20,000 patients who are active users of electronic patient portals to one of the 4 study arms: (1) receipt of a portal message promoting influenza vaccines and offering online appointment scheduling; (2) receipt of an IVR call with similar content but without appointment facilitation; (3) both (1) and (2); or (4) neither (1) nor (2) (usual care). We will randomize patients without electronic portals (10,000 patients) to (1) receipt of IVR call or (2) usual care. Both portal messages and IVR calls promote influenza vaccine completion. Our primary outcome is percentage of eligible patients with influenza vaccines administered at our group practice during the 2014-15 influenza season. Both outreach methods also solicit patient self-report on influenza vaccinations completed outside the clinic or on barriers to influenza vaccination. Self-reported data from both outreach modes will be uploaded into the EHR to increase accuracy of existing provider-directed EHR CDS (vaccine alerts).
RESULTS: With our proposed sample size and using a factorial design, power calculations using baseline vaccination rate estimates indicated that 4286 participants per arm would give 80% power to detect a 3% improvement in influenza vaccination rates between groups (alpha=.05; 2-sided). Intention-to-treat unadjusted chi-square analyses will be performed to assess the impact of portal messages, either alone or in combination with the IVR call, on influenza vaccination rates. The project was funded in January 2014. Patient enrollment for the project described here completed in December 2014. Data analysis is currently under way and first results are expected to be submitted for publication in 2016.
CONCLUSIONS: If successful, this study\u27s intervention may be adapted by other large health care organizations to increase vaccination rates among their eligible patients.
CLINICALTRIAL: ClinicalTrials.gov NCT02266277; https://clinicaltrials.gov/ct2/show/NCT02266277 (Archived by WebCite at http://www.webcitation.org/6fbLviHLH)
BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities
Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a “predominantly neurodegenerative” and a “predominantly vascular” cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. © 2016 The Author
- …