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A B S T R A C T

White matter hyperintensities (WMH), also known as white matter lesions, are localised white matter areas that
appear hyperintense on MRI scans. WMH commonly occur in the ageing population, and are often associated with
several factors such as cognitive disorders, cardiovascular risk factors, cerebrovascular and neurodegenerative
diseases. Despite the fact that some links between lesion location and parametric factors such as age have already
been established, the relationship between voxel-wise spatial distribution of lesions and these factors is not yet
well understood. Hence, it would be of clinical importance to model the distribution of lesions at the population-
level and quantitatively analyse the effect of various factors on the lesion distribution model.

In this work we compare various methods, including our proposed method, to generate voxel-wise distributions
of WMH within a population with respect to various factors. Our proposed Bayesian spline method models the
spatio-temporal distribution of WMH with respect to a parametric factor of interest, in this case age, within a
population. Our probabilistic model takes as input the lesion segmentation binary maps of subjects belonging to
various age groups and provides a population-level parametric lesion probability map as output. We used a spline
representation to ensure a degree of smoothness in space and the dimension associated with the parameter, and
formulated our model using a Bayesian framework.

We tested our algorithm output on simulated data and compared our results with those obtained using various
existing methods with different levels of algorithmic and computational complexity. We then compared the better
performing methods on a real dataset, consisting of 1000 subjects of the UK Biobank, divided in two groups based
on hypertension diagnosis. Finally, we applied our method on a clinical dataset of patients with vascular disease.

On simulated dataset, the results from our algorithm showed a mean square error (MSE) value of 7:27� 10�5,
which was lower than the MSE value reported in the literature, with the advantage of being robust and
computationally efficient. In the UK Biobank data, we found that the lesion probabilities are higher for the hy-
pertension group compared to the non-hypertension group and further verified this finding using a statistical t-
test. Finally, when applying our method on patients with vascular disease, we observed that the overall proba-
bility of lesions is significantly higher in later age groups, which is in line with the current literature.
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density-weighted brain MRI images. Even though the pathogenesis of
WMH has not yet been well understood (Wardlaw et al., 2013), WMH are
strongly associated with cerebrovascular disease and vascular risk factors
(Li et al., 2013), and they are also frequently found in neurodegenerative
diseases such as Alzheimers disease (Debette and Markus, 2010; Prins
and Scheltens, 2015). In the general population, they have been associ-
ated with increased risk of stroke, dementia and death (Debette et al.,
2010).

Several visual rating scales for WMH are available and commonly
used (Wahlund et al., 2001; Fazekas et al., 1987). Various segmentation
algorithms for voxel-wise assessment of WMH are also available (Cal-
igiuri et al., 2015), including our own (Griffanti et al., 2016). They
generate a lesion probability map for a single subject indicating the
probability for each voxel of being WMH. However, determining the
voxel-wise distribution of WMH at the population-level is important in
order to investigate the relationship between the spatial distribution of
lesions and various factors such as age, vascular risk factors and cognitive
function (e.g. measured with the Montreal Cognitive Assessment (MoCA)
score). In a population-level parametric lesion probability map, the value
at each voxel reflects the probability of finding a lesion in a specific
population for a parametric factor of interest. This would aid in studying
differences in lesion distribution between normal and pathological
ageing (Biesbroek et al., 2013; Duering et al., 2014) and be useful in the
clinical context of the studied population. In fact, although the occur-
rence of WMH is common in the ageing population, clear relationships
between amount and distribution of lesions and the cognitive, demo-
graphical, and risk factors are not yet well understood.

The simplest method used in the literature for correlating voxel-wise
lesion distribution maps with various parametric factors (such as age,
cognitive function and so on) includes averaging subject-level lesion
probability maps (Rostrup et al., 2012) that are grouped according to
those parametric factors. However, this approach does not necessarily
provide continuity or smoothness in space or across the parametric
dimension for the lesion probabilities. Alternatively, several mass-uni-
variate methods such as voxel-based lesion-symptom mapping (VLSM)
(Bates et al., 2003) and voxel-wise linear regression of lesion probabili-
ties against various factors (Charil et al., 2003, 2007) have been pro-
posed. For example, Charil et al., 2007 studied the correlation between
the cortical thickness and various factors including lesion distribution in
multiple sclerosis using voxel-wise linear regression. However, these
methods are based on models that work independently in each voxel and
do not capture the relationship between neighbouring voxels. Hence,
they are not ideal for modelling the lesion distribution, since lesions are
clustered regions rather than isolated voxels. Moreover, the linear models
used in these methods are not optimal for binary data (Charil et al., 2007;
Bates et al., 2003).

Spatially varying coefficient processes establish a local spatial rela-
tionship between the coefficients of regression models (Gelfand et al.,
2003; Gamerman et al., 2003; Ge et al., 2014). For example, Bayesian
Spatial Generalized Linear MixedModel (BSGLMM) proposed by Ge et al.
(2014) is based on spatially varying coefficients to determine the rela-
tionship between the spatial distribution of lesions and subject specific
covariates such as multiple sclerosis (MS) subtype, age, gender, disease
duration and disease severity measures. The spatially varying coefficients
are modelled jointly using a multivariate pairwise difference prior model,
a particular instance of the Multivariate Conditional Autoregressive
model. However, the dimension of the correlation matrices involved in
spatially varying coefficient processes is very high and their inversion
becomes computationally infeasible for very large imaging datasets (Ge
et al., 2014). In fact, the computational load of the model proposed by
(Ge et al., 2014) requires the use of graphical processing units for parallel
computing.

Several solutions have been proposed to overcome this problem,
including Gaussian predictive processes (Banerjee et al., 2008), using a
truncated Karhunen-Love expansion to estimate spatially varying co-
efficients (Crainiceanu et al., 2009), functional principal component
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analysis approach (Reiss and Ogden, 2010) and covariance tapering
(Kaufman et al., 2008). However, all of them perform data reduction
(unlike Ge et al., 2014) and depend on strict assumptions (Crainiceanu
et al., 2009).

In this paper, we propose an alternative approach by developing a
probabilistic model to obtain a parametric lesion probability map in
order to investigate the relationship between distribution of WMH and
various parametric factors. Our method is not computationally intensive,
and uses a spline representation to ensure continuity and smoothness
between neighbouring voxels in both spatial and parametric dimensions.
In our model, the lesion distribution at each voxel is obtained by the
linear combination of all the splines on the neighbouring voxels. More-
over, our model adopts a Bayesian framework in order to overcome the
discretely sampled nature of the input binary maps obtained from lesion
segmentation. Our approach for modelling the spatial distribution of
lesions is suitable for very large imaging datasets such as UK Biobank
(Miller et al., 2016) and allows the flexibility of observing the effect of
various parametric factors on the lesion distribution. Although in prin-
ciple our model could work with any factor, in this work we analysed the
voxel-wise distribution of lesions with respect to age since a strong
relationship between the progression of WMH and age has already been
established (Simoni et al., 2012).

We first evaluated our model on a simulated dataset and compared it
to existing methods. We then validated our model on two real datasets.
The first one is a subsample of the UK Biobank, in which we tested the
relationship between WMH and age comparing subjects with and
without hypertension. We chose hypertension as our grouping variable,
since it has been found to be one of the important risk factors of WMH
(Dufouil et al., 2001; Gottesman et al., 2010) in addition to age. Also in
this case we compared our results against the existing methods. As a final
validation, we applied our model to a clinical population (vascular
population of subjects who had a transient ischemic attack or minor
stroke) and analysed the results with respect to age.

2. Methods

2.1. Modelling the distribution of WMH using Bayesian inference

Our proposed Bayesian spline model takes as input the binary lesion
map and the age (or other parametric factor of interest) for each indi-
vidual subject. We model the distribution of lesions in three steps: 1)
constructing a representation for the lesion probability distribution using
by spline basis functions, 2) formulation of the posterior lesion proba-
bility; and 3) maximisation of the posterior probability by constrained
optimisation.

Let Ds be the 3D binary lesion map of individual subject S. Our aim
was to form a 4D spatio-temporal parametric lesion probability map with
the 4th dimension indicating the parametric factor of interest.

2.1.1. Constructing a representation for the lesion probability distribution
using by spline basis functions

Since the binary lesion maps contains localised areas, the lesion
voxels are sparse and have discrete values (0 or 1). Therefore, to ensure
spatial and temporal continuity in the probability distribution of lesions,
we approximate the lesion probabilities using cubic b-splines.

Consider cubic b-splines with spline coefficients Ci and basis func-
tions Bij, where i denotes the indices of knot points of the basis functions
and j ¼ ðx; y; z; tÞ indicate the spatial coordinates in the first 3 dimensions
and the parametric factor in the 4th dimension. The lesion probability θj
at each voxel is related to Ci and Bij by eqn. (1):

θj ¼
X
i

CiBij ¼ CTB (1)

The probability value at each voxel is calculated as the linear com-
bination of spline basis functions. We formulated the splines as a



Fig. 1. Spline modelling with cubic b-splines. (a) Average of binary lesion maps that are grouped according to a parametric factor, (b) Cubic b-spline used for
modelling, (c) Spatially continuous lesion probability map obtained as a result of spline fitting. The convolution of (b) with (a) is done in all 4 dimensions inde-
pendently to get (c).

Fig. 2. Accumulation of data. (a) In each age group aget , the number of subjects
having lesions (Rj). (b) Gradient of the log-probability distribution obtained by
Eqn. (16).
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separable outer product of individual 1D splines in 4 dimensions (3 in
space and one in the parametric dimension). To implement the above
calculation, we generated 1-dimensional cubic b-splines and convolved
the binary map with scaled 1D b-splines independently in all 4 di-
mensions to get spatially continuous lesion probabilities θ as shown in
Fig. 1. This operation is more computationally efficient than off-the-shelf
spline fitting toolboxes and is well suited to large datasets.

It is worth noting that after each convolution edge artefacts occurred
due to convolution with the tails of the splines and zero padding. In order
to get the corrected convolution output fnorm, we divided the convolution
output fin with a normalising image (formed by convolving the same b-
splines B with an unity image uðxÞ, where uðxÞ ¼ 1 inside the valid FOV -
brain voxels - and 0 outside, thus forming a similar pattern at the edges)
as shown in eqn. (2).

fnormðx0Þ ¼
P

xfinðxÞ:Bðx0 � xÞP
xuðxÞ:Bðx0 � xÞ (2)

2.1.2. Formulation of the posterior lesion probability
The most common lesion probability estimation method is averaging

lesion maps across subjects. However, the accuracy of this approach is
sensitive to the amount of data, especially considering the fact that there
might not be any subject representing specific age groups or a few sub-
jects might not have any WMH. Bayesian methods are well suited to this
problem since they allow for the uncertainty associated with the limited
amount of data, while the spline model ensures continuity between the
neighbouring voxels.

As we consider age as our parametric factor, the 4th dimension, t, of
our data indicates the bin number corresponding to the age groups. We
formed these bins t by grouping the subjects into age groups aget (e.g.,
age1 ¼ [20, 22], age2 ¼ [23, 25], etc.). The age groups can be defined to
have a duration as short as we require (even in months) and hence
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binning the ages does not necessarily restrict the values to be overly
discretised in the parametric dimension. Let R (shown in Fig. 2(a)) be the
4D spatio-temporal volume formed by summing the binary lesionmaps of
the subjects in each age group aget . The value at each voxel Rj ¼
Rðx; y; z; tÞ denotes the number of subjects having lesions at that voxel in
the age group aget . Let N be a 4D volume in which the value at each voxel
Nj ¼ Nðx; y; z; tÞ denotes the number of subjects in each age group aget . R
and N are formed by,

Rj ¼
X
S2T

DSj; where T ¼ fSjage of S 2 agetg (3)

Nj ¼ # subjects in aget (4)

For an age group aget , Rj indicates number of observations of binary
data (lesion occurrence) in the subjects belonging to this age group aget ,
with the total number of subjects in aget given by Nj. Thus the probability
of observing Rj number of binary outputs given Nj and probability of
lesion occurrence θj for an age group aget is given by the binomial like-
lihood distribution,

p
�
Rj

��Nj; θj
� ¼ NjCRj

θ
Rj
j

�
1� θj

�ðNj�RjÞ (5)

where NjCRj
¼ Nj !

Rj !ðNj�RjÞ!. The full likelihood distribution (assuming inde-

pendence between age groups and voxel locations) for all age groups and
at all voxel locations is given by the product of individual likelihoods,

pðRjN; θÞ ¼
Y
j

p
�
Rj

��Nj; θj
�

(6)

¼
Y
j

�
NjCRj

θ
Rj
j

�
1� θj

�ðNj�RjÞ� (7)

Using Bayes theorem, the posterior lesion probability distribution
pðθjN;RÞ is given by,

pðθjN;RÞ∝pðRjN; θÞ pðθjNÞ (8)

¼ α pðRjN; θÞ pðθjNÞ (9)

We will assume that the prior probability of lesion occurrence is the
same for any point in space and time. Hence with uniform prior pðθÞ ¼ 1,

pðθjN;RÞ ¼ α pðRjN; θÞ (10)

¼ α
Y
j

�
NjCRj

θ
Rj
j

�
1� θj

�ðNj�RjÞ� (11)

Our aim is to maximise pðθjN;RÞ to obtain a parametric model of the
lesion probability distribution over a population. Tomake the calculation
of derivatives simpler, we determine the log-posterior function since the
logarithm is a monotonically increasing function. Log-posterior LðθjN;RÞ



Fig. 3. An instance of initial and final values in the optimi-
sation step. The instances relate to two different age groups
(younger age group in top rows). All the images are shown at
slice z ¼ 45. (a) Average of lesions across the age group
(Rj=Nj). (b) Initial C values obtained by smoothing Rj=Nj, (c)
Final C values after convergence, (d) θ values from initial C

values, (e) bθ values estimated from final C values after
convergence. (f) Difference between initial θ values and finalbθ values. Note that in the younger age group there is not
much difference (top row) in θ before (d) and after (e)
convergence, since the neighbouring voxels are mostly non-

lesions in the young population, whereas bθ values are larger
and differ more in the bottom row between (d) and (e) as
shown in (f) in older population.
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is given by,

LðθjN;RÞ ¼ logðpðθjN;RÞÞ (12)

¼ log

 
α
Y
j

�
NjCRj

θ
Rj
j

�
1� θj

�ðNj�RjÞ�! (13)

¼ logðαÞ þ
X
j

log
�
NjCRj

�
þ
X
j

Rj log
�
θj
�þX

j

�
Nj � Rj

�
log
�
1� θj

�
(14)

Since the lesion probability values θ have been approximated with
spline basis functions as explained in the section above, we substitute the
values of θ from eqn. (1) in the above log-posterior equation,

LðθjN;RÞ ¼ logðαÞ þ
X
j

log
�
NjCRj

�
þ
X
j

Rj log

 X
i

CiBij

!
þ
X
j

�
Nj

� Rj

�
log

 
1�

X
i

CiBij

!
(15)

The derivative of LðθjN;RÞ with respect to the spline coefficients Ck is
given by,

∂ðLðθjN;RÞÞ
∂Ck

¼
X
j

�
RjBkjP
iCiBij

�
þ
X
j

��
Nj � Rj

�
BkjP

iCiBij � 1

�
(16)
437
Note that the derivative function requires more spline modelling steps
(basically, each summation requires a 4D spline approximation), how-
ever, performing 1D convolutions independently in 4 dimensions
considerably reduces the running time.

2.1.3. Maximisation of the posterior probability by constrained optimisation
In order to estimate the final lesion probability θi, we need to deter-

mine the spline coefficient values that would maximise the log-posterior.
Also, by maintaining the value of Ci within the range [0,1] the final θi
values will be constrained to the range [0,1]. Hence, to determine the
value of Ci corresponding to the maximum posterior estimate, we
formulated it as a constrained local optimisation problem as specified
below:

argmin
C

� LðθjN;RÞ
Subject to 0 � Ci � 1P

i
Ci ¼ 1

(17)

We used the steepest gradient descent algorithm, which is a first order
optimisation algorithm that uses an iterative polynomial line search
method for the above optimisation. The step size γ for each iteration is
determined by a polynomial line search method satisfying Armijo - Wolfe
conditions (Wolfe, 1969). In our case, the function to be minimised is �
LðθjN; RÞ. For L : ℝn → ℝ, the step size for each iteration follows the
following condition:

min
C

� Lðθk þ γqkÞ (18)



Fig. 4. An instance of simulated lesion data Rsim (shown at slice z ¼ 45 and age bin number t ¼ 20). (a) Addition of random noise to μ indicating randomly sampled
voxels, (b) lesion voxels after smoothing (a) with K, (c) K*μ, (d) Sum of binary lesion maps (Rsim) in a specific age group, (e) Simulated θtrue image Nsim.
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where, θk is the current guess, qk indicates the search direction and γ is
the step size. Moreover, in order to speed up the convergence, we rede-
fined Ci using a normalising function (with parameter λi 2 ð� ∞; þ ∞Þ)
in order to maintain the range of Ci within [0,1] and relax the optimi-
sation constraints as given by,

argmin
λ

� LðθjN;RÞ
Subject to �∞ < λi < ∞P

i
Ci ¼ 1

(19)

where Ci ¼ ð1þ tanhðλiÞÞ=2 so that Ci 2 ½0; 1� when λi 2 ð� ∞; þ ∞Þ.
Using the chain rule, the derivative of LðθjN;RÞ (eqn (16)) can be
modified as

∂ðLðθjN;RÞÞ
∂λ ¼ ∂ðLðθjN;RÞÞ

∂Ck

∂Ck

∂λk
(20)

¼
"� P

jRjP
iCiBij

�
Bkj þ

 P
j

�
Nj � Rj

�P
iCiBij � 1

!
Bkj

#
sech2ðλiÞ

2
(21)

We perform a step of spline modelling (given by eqn. (1)) on the
optimal Ci that maximises the log-posterior �LðθjN;RÞ to get the final

estimated parametric lesion probability map bθ. We determined the
average of lesion binary maps of subjects within the age group aget to get
the age group-wise average 4D lesion map Average ¼ P

jðRj=NjÞ. We
provided smoothed Average as the initial estimate for Ci during
optimisation.

Fig. 3 illustrates the initial and final values of Ci and λi involved in the
optimisation step for two different age groups (taken from different age
bins of the 4D spatio-temporal map). The initial θ values (Fig. 3(d)) and

the final bθ values (Fig. 3(e)) are shown with their difference (Fig. 3(f)).

The results show little difference between the initial θ values and final bθ
values for the younger age group (� 0.005 in Fig. 3(f, bottom row)) and a
higher difference (� 0.01 in Fig. 3(f, top row)) in the elder age group.
This could be attributed to the difference in the amount of lesion voxels
between the age groups.

2.1.4. Convergence analysis
Implementation of steepest gradient descent optimisation algorithm

was done in MATLAB (Bortz and Kelley, 1998). We specified the initial
step-size γ to be 1� 10�3, while step sizes for the subsequent iterations
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were determined by the polynomial line search algorithm, for which
lower and upper bounds were set to 0:1� initial γ and 0:5� initial γ
respectively. We specified the maximum number of iterations as 50. The
main parameter for determining γ for each iteration is the 2-norm kG k of
the 4D gradient matrix G (calculated from eqn. (20)). We set the final
convergence tolerance value for the decrease in kG k as 1� 10�4 (since
gradient of the function must be zero at the function minimum).

2.2. Simulations

In order to evaluate the accuracy of our model, we initially tested it on
a simulated dataset. To this aim, we compared the ground truth distri-

bution (θtrue) with the probability distribution (bθ) estimated by our al-
gorithm and compared it with other methods.

We simulated volumes of size 91� 109� 91 arranged in 6 months
age bins to form 60 age groups, thus creating a simulated set of subject
images with dimensions 91� 109� 91� 60. For this simulation, we
assigned a random number of subjects in each age group Nsim 2 ½1;50�.
For each subject, we generated a lesion map by randomly sampling
voxels within a specified ROI (in our case, the MNI brain mask). For
sampling, we used the smoothed average of lesion probability maps from
a previous study (vascular cohort in Griffanti et al. (2016)) as the ground
truth probabilities to obtain a realistic WMH spatial distribution. The
probability of sampling each lesion voxel in the data is initially repre-
sented by a random normal variable NðμðxÞ;1Þ. In order to avoid isolated
lesion voxels and to establish spatial dependencies between the neigh-
bouring voxels (so that sampled voxels would look like plausible lesions),
we smoothed the sampled lesion voxels using a Gaussian kernel K with a
standard deviation of 0.8. We obtained binary lesion maps by thresh-
olding the smoothed lesion map K*NðμðxÞ;1Þ above 0. As a result of
convolution with K, the ground truth distribution at voxel x is now
represented by NðK*μ;K2*MÞ, where M is a binary brain mask. We ob-
tained the true lesion probability for the simulation, θtrue, by calculating
the cumulative distribution function of the normal variate z ¼ K*μ=ffiffiffiffiffiffiffiffiffiffiffiffiffi
K2*M

p
or more specifically, pðz > 0Þ.

Repeating the above process Nsim times for each age group, we
accumulated the sum of binary volumes as and applied our algorithm to
Rsim and to model the distribution of lesions over the simulated popula-

tion, to get bθ (algorithm output). An instance of data obtained from the
simulation is shown in Fig. 4.



Fig. 5. Comparison of simulation analysis results using different methods. The results are shown at slice z ¼ 45 and age bin number t ¼ 33. Ground truth distribution

θtrue shown along with the outputs of various methods bθ (a–f) and the corresponding error maps immediately underneath the probability maps. The outputs are shown
for our Bayesian spline method (a), BSGLMM (b), Average (c), Smoothed Averageðσ ¼ 0:5Þ (d), Smoothed Averageðσ ¼ 1:5Þ (e) and Smoothed Averageðσ ¼ 3Þ (f).

V. Sundaresan et al. NeuroImage 185 (2019) 434–445
2.2.1. Comparison with the existing alternative methods
We applied our algorithm to the simulated data and compared its

performance with respect to some alternative methods with different
levels of complexity. The simplest method for estimating the lesion
probability with respect to age groups is to determine the group-level
average of lesion probability maps as done in Rostrup et al. (2012). We
performed the similar average on binary lesion maps and calculated
Average ¼ Rt=Nt for each age group aget . However, the resulting lesion
probability map Average is sensitive to the number of subjects in each age
bin aget and does not provide a continuous/generalized estimate of lesion
distribution. Hence another option is to smooth the average lesion dis-
tribution map Average, using a Gaussian kernel with different standard
deviations σ (0.5, 1.5 and 3.0) to get a more spatio-temporally continuous
lesion probability map Smoothed AverageðσÞ. We also applied the
Bayesian Spatial Generalized Linear Mixed Model (BSGLMM) based on
spatially varying coefficients proposed by Ge et al. (2014). We evaluated
the performance of the above methods by determining the error values
(difference between the ground truth probabilities and the outputs of the
above methods) and the corresponding mean-squared error (MSE)
values.
2.3. Application to real data

We applied our algorithm to two different groups from the UK Bio-
bank data and compared the lesion distribution between the two groups
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using themethods that provided better MSE values than those reported in
the literature, as determined from tests on the simulated dataset. We
further validated our observations by applying our method on a clinical
dataset consisting of a vascular population of subjects who had experi-
enced a transient ischemic attack or minor stroke.

The dataset used for initial validation is a subset of UK Biobank data
(Miller et al., 2016). In the UK biobank data, about 10% of the sample has
been identified as being diagnosed with hypertension, corresponding to
around 7975 subjects. Our goal was to model the lesion distribution with
respect to age, comparing the subjects diagnosed with hypertension (HT
group) to subjects without hypertension, where the latter acts like a
control group (non-HT group). In this case, to reduce the amount of
computation, we selected a balanced subset of randomly sampled 1000
subjects, 500 subjects from the HT group (age range 45.5–78.3, mean age
66.3 � 6.1 years, with female to male ratio, F:M¼ 202:298), while the
remaining were from the non-HT group (age range 45.5–78.4, mean age
62.0 � 7.6 years, with female to male ratio, F:M¼ 257:243).

For these subjects we generated binary lesion masks to be used as
input for our algorithm. This was performed using BIANCA (Griffanti
et al., 2016) on FLAIR images, also using information from T1-weighted
images (Alfaro-Almagro et al., 2018). The lesion probability maps ob-
tained were binarised after thresholding at 0.8. We then registered the
single subject binary lesion maps to the MNI space using linear and
non-linear registration, thresholded them at 0.5 and binarised them to
compensate for interpolation. We then applied our algorithm to the two



Table 1
Comparison of MSE values and running time of different methods on simulation
data.

Method MSE
values

Running time/Processor specs

Our Bayesian spline
method

7:27�
10�5

< 20min (84s per iteration) / iMac CPU
with 2.9GHz Intel Core i5 processor

BSGLMM (Ge et al., 2014) 5:22�
10�5

ffi 293min /NVIDIA Tesla K80 GPU with
12 GB

Average 18:79�
10�5

< 1 s /iMac CPU with 2.9GHz Intel Core
i5 processor

Smoothed_Averageðσ ¼
0:5Þ

3:86�
10�5

ffi 8 s /iMac CPU with 2.9GHz Intel Core
i5 processor

Smoothed_Averageðσ ¼
1:5Þ

8:56�
10�5

ffi 11 s /iMac CPU with 2.9GHz Intel
Core i5 processor

Smoothed_Averageðσ ¼
3Þ

33:71�
10�5

ffi 17 s /iMac CPU with 2.9GHz Intel
Core i5 processor
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groups separately and compared the results with those from other
methods. When applying our method, we arranged the subjects in each
group into one year age bins to form a 4D image of dimension 91� 109�
91� 33. We compared the two groups using an unpaired t-test using
permutation testing (randomise, Winkler et al., 2014) to analyse the
significance of the difference in the lesion probability values between HT
and non-HT groups, and calculated the corresponding z-scores. Results
were considered significant for pcorr < 0:05, corrected for multiple
comparisons by using the null distribution of the max (across the image)
voxelwise test statistic. For BSGLMM, the t-values were obtained by
dividing the posterior mean by posterior standard deviation (Ge et al.,
2014).

Finally, we validated our algorithm on a clinical dataset of subjects at
risk of vascular cognitive impairment. The dataset consists of MRI data
from 474 consecutive eligible participants from Oxford Vascular Study
(OXVASC) (Rothwell et al., 2004), who had recently experienced a minor
non-disabling stroke or transient ischemic attack (TIA) (age range
20–102 years, mean age 67.4 � 14.3 years, with female to male ratio,
Fig. 6. Lesion probability values plotted versus age. The plot of lesion probability va
truth images indicate the voxel locations corresponding to the plot.
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F:M¼ 240:234) (see Griffanti et al., 2016 for more details). Similar to the
UK Biobank dataset, we obtained the lesion binary masks using BIANCA
and registered the single-subject masks to the MNI space. We grouped the
data in age bins of 3 years to form a 4D image of dimensions 91� 109�
91� 27 and applied our model. We also performed permutation-based
statistical analysis (corrected for multiple comparisons) to test the sta-
tistical significance of the effect of age on the lesion probabilities. For this
analysis, in each iteration, we permuted the data with respect to the age
groups and applied our model on the permuted data to generate results
for that permutation, that were then used to assess statistical significance,
with correction for multiple comparisons (using the maximum statistic
across space).

3. Results

3.1. Results on the simulated data

Fig. 5 shows the error values of the outputs of the different methods
with respect to ground truth, while Table 1 reports the corresponding
MSE values and running time. For the Smoothed AverageðσÞ method, we
tried various values of standard deviations σ for the Gaussian kernel and
have shown the results for the three σ values that provided minimum
MSE values for this simulated dataset.

On a simulated dataset consisting of 698 subjects, we obtained an
MSE value of 7:27� 10�5 for our Bayesian spline method, while
BSGLMM method gave a lower MSE value of 5:22� 10�5 with � 15
times slower running time. Average is the fastest (with < 1 s running
time) but gives twice as much as error (18:790� 10�5) as our method. Ge
et al., 2014 reported an MSE value of on simulated data consisting of 100
randomly sampled subjects. From Table 1, we can observe that only
Average and Smoothed Averageðσ ¼ 3Þ give MSE values greater than 12�
10�5 (reported in Ge et al., 2014). Moreover, both MSE values and
running times increases as the standard deviation σ of the smoothing
kernel increases due to increase in the kernel size.

Fig. 6 shows the lesion probability with respect to age at two
lues shown for (a) anterior and (b) posterior voxels. The red dot on the ground



Fig. 7. Results on UK Biobank data. Output of our Bayesian spline method on HT group (a) and non-HT group (b) shown along with their difference maps (c). First
column shows the age group t¼ 20 (aget ¼ 64.4–65.4 years) and second column shows t¼ 33 (aget ¼ 77.4–78.4 years). All the results have been shown at the slice
z¼ 45 (MNI template on the left).
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representative voxels (one more anterior and one more posterior) for the
tested methods. The curves obtained from Average and
Smoothed Averageðσ ¼ 0:5Þ are very close to the ground truth, but they
show spikes due to their dependence on the number and WMH charac-
teristics of the specific subjects in each group and our method give curve
that capture the true trend quite well. BSGLMM posterior probabilities
tend to increase monotonically with age throughout the white matter
irrespective of the location of the lesions.

We also tested the effect of change in cubic b-spline knot spacing and
the standard deviation of kernel K used in the ground truth estimation on
the error values (see supplementary material). We observed that the
cubic b-splines with knot spacing of 2 voxels provided the best result on
the simulated data and hence we used the same specifications henceforth
on the real data experiments.
3.2. Results on the real data

We show the results of our algorithm on UK Biobank data to estimate
the lesion distribution probabilities with respect to age within the HT and
non-HT subjects in Fig. 7.

The lesion probabilities increased with age for both the groups and
are higher in the HT group (� 0.4 as shown in Fig. 7(c)) than the non-HT
group. We can observe that this difference is higher in the periventricular
regions compared to deep regions, and higher in the older age groups (�
0.3 between the columns in row (c)) compared with the younger group.
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So not only is there a strong relationship between lesion probabilities and
hypertension, but also this relationship is more pronounced as the pop-
ulation gets older.

In Fig. 8 and Fig. 9, we show the results of our algorithm compared
with the posterior probabilities obtained from the BSGLMM method and
the outputs of smoothed average maps (Smoothed Averageðσ ¼ 0:5Þ,
Smoothed Averageðσ ¼ 1:5Þ) respectively. We chose to compare the
above methods with our Bayesian spline algorithm since these methods
gave MSE values lesser than 12� 10�5 (Ge et al., 2014) on the simulated
data (Table 1). We observed that the lesion probabilities in periven-
tricular regions increased with age for both HT and non-HT groups, while
the probabilities in deeper regions increased only in the HT group (be-
tween the first two rows in (a) in Figs. 8 and 9). The bottom rows of
Figs. 8 and 9 show the z-scores for significant regions (pcorr < 0:05),
obtained from a statistical test to determine the significance of differ-
ences between the HT and non-HT groups. We observed increased lesion
probabilities in the HT group compared with non-HT group, especially in
the deep regions. This effect is particularly strong in our method and
Smoothed Averageðσ ¼ 1:5Þ when compared with BSGLMM and
Smoothed Averageðσ ¼ 0:5Þ (Figs. 8 and 9 (bottom row)).

Fig. 10 (top row) shows the estimated lesion probabilities from our
Bayesian spline method on OXVASC data for two representative age
groups. Similar to our results on UK Biobank data, it can be observed that
the overall lesion probability values are relatively higher in the older age
group compared to the younger age group (� 0.2, between second and



Fig. 8. Comparison of the results of the Bayesian spline algorithm with BSGLMM on UK Biobank data. Top two rows show the results of the methods for HT and non-
HT groups for two age groups. The bottom row shows the z-scores in the significant regions (pcorr < 0:05), obtained from the significance test on the differences of the
lesion probabilities between HT and non-HT groups obtained by the corresponding methods.

Fig. 9. Comparison of the results of the Bayesian spline algorithm with Smoothed Averageðσ ¼ 0:5Þ and Smoothed Averageðσ ¼ 1:5Þ on UK Biobank data. Top two rows
show the results of the methods for HT and non-HT groups for two age groups. The bottom row shows the z-scores in the significant regions (pcorr < 0:05), obtained
from the significance test on the differences of the lesion probabilities between HT and non-HT groups obtained by the corresponding methods.
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third columns). On performing the permutation test, we observed that
periventricular voxels change significantly with age (p < 0:05) as shown
in Fig. 10 (bottom row).

4. Discussion and conclusion

In this work we compared several methods including our proposed
Bayesian spline method to model the distribution of white matter lesions
with respect to a parametric factor within different populations. For the
experiments in this paper, we considered age as our parameter of inter-
est, but the framework is general and can work with any continuous
parameter of interest. For example, we also modelled the distribution of
white matter lesions with respect to MoCA scores (refer supplementary
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material for details).
During the development, we analysed the effect of various parameters

of our algorithm on the resulting lesion probabilities. One of the most
important parameters in the algorithm is the knot spacing in the spline
model. We studied its effect and how it relates to the size of smoothing
kernel K used for the generation of the simulation data by varying them
independently and evaluated their combined effect on the algorithm

result bθ (see supplementary material). The best results were obtained for
the knot spacing of 2 with MSE of 7:270� 10�5. We also evaluated the
effect of the initialisation provided for the optimisation function and
observed that the algorithm converges quicker when we provide the
smoothed average lesion map as the initial value for λi, whereas it fails to
converge when a zero image or unity image is provided as initialisation



Fig. 10. Results on OXVASC data. (Top row) From left to right: MNI brain, lesion probability distribution at bin numbers t ¼ 3 (aget ¼ 29–31 years) and t ¼ 13 (aget ¼
59–61 years). The results are shown at slice z ¼ 45. (Bottom row) Results of permutation analysis. From left to right: Voxels that change significantly (p < 0:05) with
age (red) shown on slices z ¼ 39; 45 and 49.
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for λi. Also, our algorithm converges to a similar output when the average
lesion maps are smoothed with kernels of similar standard deviation. We
additionally verified on real data that our algorithm is robust with
respect to changes in the initialisation due to various levels of random
perturbations (up to 30%) in the group-wise average 4D map Ri (see
supplementary material for details).

When comparing the results of different methods on the simulated
dataset, we found that the MSE values are lower than that reported in Ge
et al. (2014) for most of the methods, except Average and
Smoothed Averageðσ ¼ 3:0Þ. We obtained the highest MSE value and
highest speed for the simplest method Average. However, this also gave a
resulting image that was not as spatially continuous as the other
methods. Moreover, the accuracy of Average (as well as of its Gaussian
smoothed results Smoothed AverageðσÞ) depends on the number of sub-
jects in the age groups. While they provide reliable estimates in larger
populations, their estimates are not so accurate when there are fewer
subjects or when the lesion load is lower, since the data becomes sparse.
Also, in the case of smoothed Smoothed AverageðσÞ method, determining
the optimum value of standard deviations σ for the Gaussian kernel is
dependent on the dataset and the lesion characteristics. However, the
smoothed Smoothed AverageðσÞ outputs provide good initial estimates for
our method and lead to better convergence, as we discussed above. We
observed that, while results of both the Bayesian spline method and
BSGLMM show relatively similar MSE values, the spline modelling in our
algorithm is spatially more robust when compared to BSGLMM method.
For instance, from Fig. 6, while lesion probabilities obtained from
BSGLMM method fit well in periventricular areas, they do not fit the
ground truth distribution as well in deep areas (Fig. 6). Another impor-
tant advantage of our method is that it is much faster than BSGLMM
(Table 1) and can easily scale up to very large numbers of subjects. Our
modelling algorithm takes less than 20min (84 s per iteration), when run
on an iMac with 2.9 GHz Intel Core i5 processor. This is due to the fact
that we independently perform the convolution in all 4 dimensions with
a 1D spline which reduces the computational load. Also, by calculating
the analytical gradient (Eqn. (16)) we avoid the numerical computation
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of gradient for 4D data in the optimisation step. Even though the
maximum number of iterations allowed for the optimisation step is 50,
our algorithm typically converges earlier (10 iterations on simulated data
and < 10 on real data). On the other hand, the BSGLMM algorithm is
computationally demanding since it has to estimate the posterior distri-
bution via Markov Chain Monte Carlo model using Gibbs sampler at each
voxel.

Our results on the real data (UK Biobank and OXVASC datasets) show
that the lesion distribution probabilities are higher in the later ages,
which is in line with the existing literature (Simoni et al., 2012; Alfar-
o-Almagro et al., 2018). Moreover, the fact that we observed an increase
in lesion probabilities in deep white matter regions in the HT group with
respect to the non-HT group for all the methods (Figs. 8 and 9), suggests
that deep lesions might be associated with hypertension. The same
phenomenon has also been reported in Rostrup et al. (2012). We further
verified it with our statistical tests and observed higher value of z-scores
with greater significance (p < 0:05), particularly in the deep regions
between the HT and non-HT groups. Though this is generally observable
in all the methods, it is more evident for our Bayesian spline method and
smoothed average map Smoothed Averageðσ ¼ 1:5Þ i.e. deep regions are
affected significantly in the HT group compared with the non-HT group
for these two methods.

The results on the UK Biobank data are similar to those on the
simulated data when comparing the Bayesian spline method with
BSGLMM and Smoothed Average. Smoothed Averageðσ ¼ 0:5Þ, did not
yield a smooth lesion distribution and had isolated voxels in the lesion
probability maps. Since this method gave lower MSE on simulated data
with respect to our method, and in absence of ground truth, we cannot
exclude the possibility that spline interpolation in our method induces
spurious smoothness that is not inherent to the data. However, the
simulation results also suggest that Smoothed Averageðσ ¼ 0:5Þ method
produces less smooth data because it is affected by the sparsity of the
observed data and hence is dependent on data/lesion characteristics.
Also, results of the statistical test using Smoothed Averageðσ ¼ 0:5Þ show
only a few isolated voxels that are significantly different between the HT
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group and the non-HT group, while the relationship between WMH and
blood pressure is well known (Dufouil et al., 2001; Rostrup et al., 2012)
and detected quite strongly by the other methods (including ours), that
produce a smoother lesion distributions.

To conclude, we compared different methods to model the distribu-
tion of white matter hyperintensities within a population with respect to
a parametric factor of interest, such as age. The evaluation of the pro-
posed Bayesian spline method on the simulated data provides an MSE
value of 7:27� 10�5, with the advantage of being computationally more
efficient. We compared the results of various methods on a real dataset
between hypertension and control groups and found that deep lesions
increase significantly with hypertension, which is inline with existing
work. We validated our model on real data showing that periventricular
lesions increase significantly with age, which is well established in the
literature. The results are consistent between the two datasets, showing
that our model is robust across datasets. We also verified that this trend of
change in lesion probabilities with age remains same irrespective of the
initial thresholds use for obtaining subject-level lesion binary maps (see
supplementary material for details). As future work, the Bayesian spline
method could be used to model the voxel-wise relationship between the
distribution of WMH and other population-level parametric factors that
can be useful in the clinical context of the studied population. Another
interesting future direction could be to extend the scope of our method in
modelling the distribution of other types of lesions (e.g. Multiple scle-
rosis) and test the robustness of the spline method in modelling lesions
that have a different spatial pattern from WMH. In addition, the lesion
probability distribution map obtained from our model can be used either
as an additional feature or as a spatial prior to improve lesion segmen-
tation algorithms (Sundaresan et al., 2018).
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