252 research outputs found

    Zero Temperature Dynamics of 2D and 3D Ising Ferromagnets

    Full text link
    We consider zero-temperature, stochastic Ising models with nearest-neighbor interactions in two and three dimensions. Using both symmetric and asymmetric initial configurations, we study the evolution of the system with time. We examine the issue of convergence of the dynamics and discuss the nature of the final state of the system. By determining a relation between the median number of spin flips per site, the probability p that a spin in the initial spin configuration takes the value +1, and lattice size, we conclude that in two and three dimensions, the system converges to a frozen (but not necessarily uniform) state when p is not equal to 1/2. Results for p=1/2 in three dimensions are consistent with the conjecture that the system does not evolve towards a fully frozen limiting state. Our simulations also uncover `striped' and `blinker' states first discussed by Spirin et al., and their statistical properties are investigated.Comment: 17 pages, 12 figure

    Ising Ferromagnet: Zero-Temperature Dynamic Evolution

    Get PDF
    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.Comment: 14 pages, Latex with 8 EPS figure

    Metastability in zero-temperature dynamics: Statistics of attractors

    Full text link
    The zero-temperature dynamics of simple models such as Ising ferromagnets provides, as an alternative to the mean-field situation, interesting examples of dynamical systems with many attractors (absorbing configurations, blocked configurations, zero-temperature metastable states). After a brief review of metastability in the mean-field ferromagnet and of the droplet picture, we focus our attention onto zero-temperature single-spin-flip dynamics of ferromagnetic Ising models. The situations leading to metastability are characterized. The statistics and the spatial structure of the attractors thus obtained are investigated, and put in perspective with uniform a priori ensembles. We review the vast amount of exact results available in one dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular Matter edited by M. Nicodem

    Fabrication of magnetic and photocatalytic polyamide fabric coated with Fe2O3 particles

    Get PDF
    Hematite (alpha-Fe₂O₃) particles are prepared and synchronously deposited on the surface of polyamide (PA) fabric using ferric sulfate as the precursor, sodium hydroxide as the precipitant, and sodium dodecyl benzene sulfonate as the dispersant in a low temperature hydrothermal process. The Fe₂O₃ coated PA fabric is then modified with silane coupling agent Z-6040. The Fe₂O₃ coated PA fabric and remaining particles are systematically characterized by different techniques, such as small-spot micro X-ray fluorescence (μ-XRF), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), diffuse reflectance spectrum (DRS), and vibrating sample magnetometer (VSM). The properties of tensile, durable washing and photocatalytic activity are investigated. The experimental results show that Fe₂O₃ particles composed of nanoparticles having the average crystallite size of 37.8 nm are grafted onto PA fabric and enhanced by coupling agent via the C-Fe, O-Fe and Si-O-Fe bonds. It is found that, after treatments, the thermal stability of PA fabric hardly changes; the visible light absorption capability and magnetism are gained; and the tensile property decreases slightly. It is also confirmed that the Fe₂O₃ coated PA fabric can withstand the repeated washings up to 20 times and photodegrade the adsorbed methyl orange (MO) exposed to ultraviolet (UV) irradiation. Therefore, the present method provides a new strategy for the production of durable magnetic fabric

    An Arthroscopic Device to Assess Articular Cartilage Defects and Treatment with a Hydrogel

    Get PDF
    The hydraulic resistance R across osteochondral tissue, especially articular cartilage, decreases with degeneration and erosion. Clinically useful measures to quantify and diagnose the extent of cartilage degeneration and efficacy of repair strategies, especially with regard to pressure maintenance, are still developing. The hypothesis of this study was that hydraulic resistance provides a quantitative measure of osteochondral tissue that could be used to evaluate the state of cartilage damage and repair. The aims were to (1) develop a device to measure R in an arthroscopic setting, (2) determine whether the device could detect differences in R for cartilage, an osteochondral defect, and cartilage treated using a hydrogel ex vivo, and (3) determine how quickly such differences could be discerned. The apparent hydraulic resistance of defect samples was ~35% less than intact cartilage controls, while the resistance of hydrogel-filled groups was not statistically different than controls, suggesting some restoration of fluid pressurization in the defect region by the hydrogel. Differences in hydraulic resistance between control and defect groups were apparent after 4 s. The results indicate that the measurement of R is feasible for rapid and quantitative functional assessment of the extent of osteochondral defects and repair. The arthroscopic compatibility of the device demonstrates the potential for this measurement to be made in a clinical setting

    Maskless Plasmonic Lithography at 22 nm Resolution

    Get PDF
    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing

    The ‘Biophilic Organization’: An Integrative Metaphor for Corporate Sustainability

    Get PDF
    This paper proposes a new organizational metaphor, the ‘Biophilic Organization’, which aims to counter the bio-cultural disconnection of many organizations despite their espoused commitment to sustainability. This conceptual research draws on multiple disciplines such as evolutionary psychology and architecture to not only develop a diverse bio-cultural connection but to show how this connection tackles sustainability, in a holistic and systemic sense. Moreover, the paper takes an integrative view of sustainability, which effectively means that it embraces the different emergent tensions. Three specific tensions are explored: efficiency versus resilience, organizational versus personal agendas and isomorphism versus institutional change. In order to illustrate how the Biophilic Organization could potentially provide a synthesis strategy for such tensions, healthcare examples are drawn from the emerging fields of Biophilic Design in Singapore and Generative Design in the U.S.A. Finally, an example is provided which highlights how a Taoist cultural context has impacted on a business leader in China, to illustrative the significance of a transcendent belief system to such a bio-cultural narrative

    Identification of Mechanosensitive Genes during Embryonic Bone Formation

    Get PDF
    Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by “mechanosensitive” genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo
    corecore