35 research outputs found

    Deployment of genetic and genomic tools toward gaining a better understanding of Rice-Xanthomonasoryzae pv. oryzae interactions for development of durable bacterial blight resistant rice

    Get PDF
    Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant’s defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management

    Fluselenamyl: A novel benzoselenazole derivative for PET detection if amyloid plaques (Aβ) in Alzheimer\u27s disease

    Get PDF
    Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aβ pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer’s disease (AD) brain sections, and remarkable specificity for mapping Aβ compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [(18)F]-9, a PET tracer demonstrates superior (2–10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aβ plaques. Pharmacokinetic studies indicate high initial influx of [(18)F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [(18)F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [(18)F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aβ binding, and a fair correlation with Aβ immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aβ pathophysiology in vivo

    A Single-Tube, Functional Marker-Based Multiplex PCR Assay for Simultaneous Detection of Major Bacterial Blight Resistance Genes Xa21, xa13 and xa5 in Rice

    Get PDF
    AbstractIn marker-assisted breeding for bacterial blight (BB) resistance in rice, three major resistance genes, viz., Xa21, xa13 and xa5, are routinely deployed either singly or in combinations. As efficient and functional markers are yet to be developed for xa13 and xa5, we have developed simple PCR-based functional markers for both the genes. For xa13, we designed a functional PCR-based marker, xa13-prom targeting the InDel polymorphism in the promoter of candidate gene Os8N3 located on chromosome 8 of rice. With respect to xa5, a multiplex-PCR based functional marker system, named xa5FM, consisting of two sets of primer pairs targeting the 2-bp functional nucleotide polymorphism in the exon II of the gene TFIIAɤ5 (candidate for xa5), has been developed. Both xa13-prom and xa5FM can differentiate the resistant and susceptible alleles for xa13 and xa5, respectively, in a co-dominant fashion. Using these two functional markers along with the already reported functional PCR-based marker for Xa21 (pTA248), we designed a single-tube multiplex PCR based assay for simultaneous detection of all the three major resistance genes and demonstrated the utility of the multiplex marker system in a segregating population

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Marker-Assisted Pyramiding of Genes Conferring Resistance Against Bacterial Blight and Blast Diseases into Indian Rice Variety MTU1010

    No full text
    Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blast resistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assisted backcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessing Pi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generation wherein PCR based functional markers specific for the resistance genes were used for foreground selection and a set of parental polymorphic microsatellite markers were used for background selection at each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveries of MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants, which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB and blast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54) with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2 plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants were selfed to generate ICF3, which were then screened for blast resistance, and all were observed to be highly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB and blast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced for further selection and evaluation

    A prospective longitudinal study of retinal structure and function in achromatopsia

    Get PDF
    Purpose. To longitudinally characterize retinal structure and function in achromatopsia (ACHM) in preparation for clinical gene therapy trials. Methods. Thirty-eight molecularly confirmed ACHM subjects underwent serial assessments, including spectral domain optical coherence tomography (SD-OCT), microperimetry, and fundus autofluorescence (FAF). Foveal structure on SD-OCT was graded and compared for evidence of progression, along with serial measurements of foveal total retinal thickness (FTRT) and outer nuclear layer (ONL) thickness. Fundus autofluorescence patterns were characterized and compared over time. Results. Mean follow-up was 19.5 months (age range at baseline, 6–52 years). Only 2 (5%) of 37 subjects demonstrated change in serial foveal SD-OCT scans. There was no statistically significant change over time in FTRT (P = 0.83), ONL thickness (P = 0.27), hyporeflective zone diameter (P = 0.42), visual acuity (P = 0.89), contrast sensitivity (P = 0.22), mean retinal sensitivity (P = 0.84), and fixation stability (P = 0.58). Three distinct FAF patterns were observed (n = 30): central increased FAF (n = 4), normal FAF (n = 11), and well-demarcated reduced FAF (n = 15); with the latter group displaying a slow increase in the area of reduced FAF of 0.03 mm2 over 19.3 months (P = 0.002). Conclusions. Previously published cross-sectional studies have described conflicting findings with respect to the age-dependency of progression. This study, which constitutes the largest and longest prospective longitudinal study of ACHM to date, suggests that although ACHM may be progressive, any such progression is slow and subtle in most patients, and does not correlate with age or genotype. We also describe the first serial assessment of FAF, which is highly variable between individuals, even of similar age and genotype

    Evolution of pathogenicity-associated genes in Rhizoctonia solani AG1-IA by genome duplication and transposon-mediated gene function alterations

    Get PDF
    Background Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. Results We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. Conclusions Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control

    Not Available

    No full text
    Not AvailableKMR-3R is a stable restorer line with medium-bold grain type and is the male parent of the popular public-bred Indian rice hybrid, KRH2. As both KMR-3R and KRH2 are highly susceptible to bacterial blight (BB) and possess undesirable bold-grain type, we crossed KMR-3R with a high-yielding, BB resistant, fine-grain-type variety, Improved Samba Mahsuri, possessing the major BB resistant gene, Xa21. The F1s were backcrossed to KMR-3R, and the BC1F1 plants were subjected to marker-assisted selection (MAS) for Xa21 and two major fertility restorer genes, Rf3 and Rf4. Triple positive BC1F1 plants were selfed and their progeny were subjected to MAS for Xa21 coupled with phenotype-based visual selection for agromorphological and grainquality traits. At BC1F5 generation, three backcross derived lines (BK9, BK49 and BK61) possessing higher yield than KMR-3R, tall plant stature along with fine-grain type were identified and crossed with IR598025A, the female parent of KRH2. The hybrids were completely fertile, possessed long-slender grain type, exhibited resistance to BB and displayed a yield advantage of 24% over KRH2 under BB infectionIndian Council of Agricultural Research (ICAR) and Department of Biotechnology (DBT
    corecore