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Rice is the most important food crop worldwide and sustainable rice production is
important for ensuring global food security. Biotic stresses limit rice production
significantly and among them, bacterial blight (BB) disease caused by Xanthomonas
oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly
productive irrigated and rainfed lowland ecosystems and in recent years; the disease is
spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo
interferes with a range of physiological and biochemical exchange processes in rice. The
response of rice to Xoo involves specific interactions between resistance (R) genes of rice
and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the
recessive ones. The genetic basis of resistance to BB in rice has been studied intensively,
and at least 44 genes conferring resistance to BB have been identified, and many resistant
rice cultivars and hybrids have been developed and released worldwide. However, the
existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing
climate necessitates identification of novel broad-spectrum resistance genes and
intensification of gene-deployment strategies. This review discusses about the origin
and occurrence of BB in rice, interactions between Xoo and rice, the important roles of
resistance genes in plant’s defense response, the contribution of rice resistance genes
toward development of disease resistance varieties, identification and characterization of
.org August 2020 | Volume 11 | Article 11521

https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://www.frontiersin.org/articles/10.3389/fpls.2020.01152/full
https://loop.frontiersin.org/people/428393
https://loop.frontiersin.org/people/429909
https://loop.frontiersin.org/people/318567
https://loop.frontiersin.org/people/79898
https://loop.frontiersin.org/people/190716
https://loop.frontiersin.org/people/965097
https://loop.frontiersin.org/people/1042004
https://loop.frontiersin.org/people/1041226
https://loop.frontiersin.org/people/1018575
https://loop.frontiersin.org/people/332943
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rms_28@rediffmail.com
mailto:anirudh.kumar@igntu.ac.in
https://doi.org/10.3389/fpls.2020.01152
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.01152
https://www.frontiersin.org/journals/plant-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.01152&domain=pdf&date_stamp=2020-08-04


Kumar et al. Bacterial Blight Resistance in Rice

Frontiers in Plant Science | www.frontiersin
novel, and broad-spectrum BB resistance genes from wild species of Oryza and also
presents a perspective on potential strategies to achieve the goal of sustainable
disease management.
Keywords: rice, bacterial blight, resistance breeding, marker-assisted selection, genome editing, CRISPR/Cas,
plant defense, transcriptome
INTRODUCTION

Rice (Oryza sativa L.) is an important staple food crop for more
than 3.5 billion people across the world (Khush, 2005), provides
27 percent of the calories and 20 percent of protein required for
the global population, and remains a major source of nutrition in
developing and underdeveloped countries (FAO, 2004).
Notwithstanding the progress witnessed in rice improvement
over the last seven decades, the present rate of increase in rice
yields are not adequate to keep pace with a rapidly growing
population. The global demand of rice is estimated to rise by 26%
in next 25 years, demanding an increase in its production from
676 million tones (mt) to 852 mt over the same period across the
globe (Khush, 2013). Exacerbating the scenario, this production
goal has to be achieved in the face of shrinking agricultural lands,
dwindling water resources, declining soil productivity, and, most
importantly, increasing cost of labor and other inputs. In parallel,
we also need to improve rice production incrementally to combat
and overcome the constantly evolving pathogen and pest
populations and develop resilience in rice in the realm of
rapidly changing climatic conditions.

Biotic stresses such as insect pests (brown plant hoppers, stem
borers, etc.) and diseases such as bacterial blight caused by
Xanthomonas oryzae pv. oryzae , rice blast caused by
Magnaporthe oryzae and sheath blight caused by Rhizoctonia
solani substantially reduce rice yields globally (Savary et al.,
1998). The reduction in rice yield by bacterial blight (BB) is
reported to be 50% (Khush et al., 1989), and during severe
infection, it can reduce yield up to 81% (Srinivasan and
Gnanamanickam, 2005), making it one of the most devastating
diseases of rice (Ou, 1985). The conventional remedies
recommended for managing BB disease, such as use of
chemicals and antibiotics, biological control agents, and
cultural practices, have limited utility and remain ineffective,
especially when the disease occurs in epidemic proportion
(Sundaram et al., 2008; Gnanamanickam, 2009).

Improving host-plant immunity has been considered as one of
the best choices available for achieving economical and sustainable
management of BB disease in a durable manner (Mundt, 2014;
Pradhan et al., 2015). Understanding host resistance mechanisms
and immunity against disease-causing pathogens like Xoo and
their mutual interactions has been a topic of intense research in
the past two decades. The evolving tools and techniques of plant
molecular biology have been instrumental in getting vital insights
into host-pathogen interactions and developing strategies for
broad-spectrum, durable resistance. Chen and Ronald (2011)
highlighted the nuances associated with innate immunity of rice
against diverse pathogen elicitors. Typically, on encountering a
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biotic stress, the host plant reduces or enhances its susceptibility to
a pathogen due to the existence of molecular cross talks between
the pathogens themselves and between the pathogens and their
host plant (Atkinson and Urwin, 2012). Interactions among
pathways associated with response and tolerance/resistance to
abiotic and biotic stresses have been established, and new
insights have been gained on hormonal signaling pathways
associated with antagonistic or synergistic interactions between
biotic and abiotic stresses (Denancé et al., 2013; Jain et al., 2017).
Therefore, understanding host-pathogen communication has been
a longtime pursuit of plant biologists and plant pathologists.

Modern omics approaches like genomics, transcriptomics,
proteomics, metabolomics, interactomics, etc. can be helpful in
identification of the genes and their products, which are
involved in pathogen perception by the host and also the
response manifested by the host against the pathogen attack.
Several resistance genes from different plant species have been
identified, molecular mapped, cloned, and characterized
(Sanseverino et al., 2010; Gururani et al., 2012). These genes
have been assembled into five classes based on predicted
protein domains (Gururani et al., 2012). Hm1 gene of maize,
which encodes a reductase, represents the first class. The HC
toxin of Cochliobolous carbonum race 1 is inactivated by Hm1
gene (Johal and Briggs, 1992). Pto gene belong to the second
class, which encode membrane-associated serine-threonine
kinase. It provides resistance to Pseudomonas syringae pv.
tomato. The cytoplasmic receptor kinase protein represents
the third class. It includes Rps2 and Rpm1, N, L6, Prf, and Xa1
gene of Arabidopsis, tobacco, flax, tomato, and rice, respectively
(Salmeron et al., 1996; Yoshimura et al., 1998). Tomato Cf gene
represents the fourth class wherein Cf gene encodes LRR motifs
in extracellular domain and a short C-terminal tail in the
intracellular domain (Dixon et al., 1996). The rice Xa21
represent the fifth class, which encodes a receptor kinase like
protein, and it confers broad spectrum resistance to Xoo (Song
et al., 1995).

In May 2014, the genome sequences of 3,000 strains of rice
have been published by a joint effort of Chinese Academy of
Agricultural Science (CAAS) and International Rice Research
Institute, Philippines (Li et al., 2014). This project undoubtedly
will provide the clear insights on utilizing host resistance genes
belonging to one or more above mentioned classes of resistance
genes for obtaining durable resistance against disease like BB (Li
et al., 2014). In this article, we have reviewed the molecular
mechanisms that are associated with interaction between rice
and Xoo, pathways of resistance and susceptibility in rice, and the
application of modern biotechnology approaches for breeding
durable, broad-spectrum BB resistance rice varieties.
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MOLECULAR EVENTS ASSOCIATED WITH
INFECTION BY XOO AND RESISTANCE
AGAINST THE PATHOGEN

Plant-Pathogen Communication and
Symptomatology
Xanthomonas oryzae pv. oryzae (Xoo) is a gram negative, non-
spore forming, rod shaped bacterium, which is motile with a
single polar flagellum. Individual cells show a range from around
0.7 to 2.0 µm in length and from 0.4 to 0.7 µm in width and
require an optimal temperature between 25 and 30°C for their
growth (Bradbury, 1984). Unlike mammals, plants have a
complex cell wall and bacteria need to get through this barrier
to gain access to nutrients. This is achieved by the bacteria
through destruction of the cell wall barrier by means of secreting
cell wall degrading enzymes (CDEs) such as lipase/esterase
(LipA), cellulase (ClsA), cellobiosidase (CbsA), xylanase (XynB),
etc., which is one of the most effective virulence strategy adapted
by bacterial pathogens (Agrios, 1997; Rajeshwari et al., 2005; Jha
et al., 2007; Malukani et al., 2020). However, receptors like
WAKL21.2 predict the damage caused by Xoo CDEs and
recruit the components of immunity (Malukani et al., 2020).
Xoo gets into rice leaf tissues generally via wounds or natural
openings such as hydathodes (Ou, 1985). Subsequently, it
multiplies and flourishes in the intercellular spaces (apoplast)
beneath the epithelial cells. Thereafter, it disseminates to other
parts of plants through the xylem vessels (Noda and Kaku, 1999).
After few days, xylem vessels are filled by bacteria and its exo-
polysacchride (EPS). The bacterial with its exudates can be
observed on the leaf surface (Figures 1 and 2), as they come
out through hydathodes. This is considered as a clear-cut
symptom of the disease and most importantly it serves as a
source of secondary inoculum (Mew et al., 1993).

Many plant pathogenic bacteria including Xoo use type III
secretion system to transport virulence proteins and enzymes to
disrupt host signaling and hijacks host metabolism for their growth
and development. The proteins secreted by type III secretion system
are called effector protein, which includes transcription activator like
(TAL) effector and non-TAL effector proteins (White et al., 2009;
Scholze and Boch, 2011). TAL effector protein supports the
proliferation of Xoo and establishment of infection in host plant
by altering host transcription machinery through upregulation of
selected host genes required for multiplication of the pathogen,
whereas non-TAL effector protein promotes virulence through
suppression of host innate immunity. Few TAL effectors and their
cognate effector (E) genes, viz., AvrXa10/Xa10, AvrXa23/Xa23, and
AvrXa27/Xa27, have been cloned from rice (Hopkins et al., 1992;
Gu et al., 2005; Tian et al., 2014), and virulence function of others
TAL effectors, TalC, pthXo1, pthXo2, pthXo3, pthXo6, and pthXo7,
have been studied. The PthXo1 TAL effector persuades the
expression of host susceptibility gene Os8N3 (nodulin 3 gene
family; renamed as OsSWEET11), which encodes a membrane
protein associated with sugar transport (Yang B. et al., 2006). In
the cultivar Nipponbare, it activates virulence by inducing Os8N3/
SWEET11 gene (Figure 3A) (Yang S. et al., 2006). It has been
reported that the recessive xa13 resistance allele arose due to
Frontiers in Plant Science | www.frontiersin.org 3
mutation in the promoter region of Os8N3/SWEET11 (Chu et al.,
2006). Another host susceptibility gene, SWEET14 is targeted by
many TALEs (viz., AvrXa7, PthXo3, TalC, and TalF; Oliva et al.,
2019) to trigger the release of sugar molecules in the apoplast
required by the pathogen as nutrient source (Streubel et al., 2013).
Mutation within effector binding element (EBE) of AvrXa7 in
the Os11N3/SWEET14 promoter resulted in disease resistance
against Xoo (Li T. et al., 2012). Similarly, deletion in the EBE of
Xa7 in wild rice confers broad spectrum resistance to BB (Hutin
et al., 2015). Two other TAL effectors PthXo6 and PthXo7 promote
the transcription of host genesOsTFX1 andOsTFIIAg1, respectively
(Sugio et al., 2007). One more TAL effector gene pthXo8 (homolog
of pthXo6) has been found to be involved in manipulation of small
RNA pathway of the host (Yang and White, 2004).

Xoo genome also encodes a type II secretion system. Proteins
secreted by type II secretion system possess secretion signal at N
terminal and are transported to periplasmic space (Voulhoux et al.,
2001; Jha et al., 2005). Type II secreted (TIIS) proteins are mostly
toxins and enzymes that targets diverse components of the host
defense system. In addition, type II secretion system secretes variety
of carbohydrate degrading enzymes like cellulases, pectate lyases,
xylanases, and polygalacturonases (Cianciotto and White, 2017),
thus weakening the cell wall. It has been noted that rice plants
perceive type II protein and in response, hypersensitive reaction is
inducted (Jha et al., 2005). Mutation in genes encoding type II
secretion system diminishes the virulence of Xoo in the host, thus
clearly demonstrating the importance of TIIS in plant pathogenesis
FIGURE 1 | Bacterial blight of rice. (A) Closer view of infected plants; (B)
bacterial ooze on infected leaf; (C) Xanthomonas oryzae pv. oryzae (Xoo)
colonies on culture plate.
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(Cianciotto and White, 2017). Xoo targets and alters different host
gene products and TAL effectors to amend the host physiology to
have favorable effects on host susceptibility. The ability of plants to
detect the adverse effects and speed of response against the pathogen
determines the host fate. It has also been found that plants down-
regulate the level of auxin in response to pathogen attack for
enhancing disease resistance (Navarro et al., 2006). In addition,
ABA suppresses the basal defense mechanism of rice against
virulent Xoo strains and likely to function as virulence factor. An
enhanced level of ABA is known to increase susceptibility of rice to
Xoo by mediating the SA defense mechanism (Xu et al., 2013). Xoo
also produce autoinducers (hormone like molecule) to detect the
local population density (quorum sensing; QS) (Karatan and
Watnick, 2009; Pradhan and Chatterjee, 2014). Based on the
quorum sensing, bacteria regulate their gene expression pattern to
effectively parasitize the plant cells (Karatan and Watnick, 2009).
Various signaling molecules engage in QS including N-
acylhomoserine lactones (AHLs), autoinducers-2 (AI-2), diffusible
signal factors (DSFs), and oligopeptides (Deng et al., 2010). Further,
the Xoo secretes large amount of extracellular polysaccharide (EPS;
extra cellular polysaccharide high molecular-weight sugar
Frontiers in Plant Science | www.frontiersin.org 4
molecules), which choke the xylem and cause typical wilting
symptoms. EPS has an important role to play as it enhances
pathogenicity by protecting the bacteria from antimicrobial
compounds of the host plants (Leigh and Coplin, 1992;
Dharmapuri and Sonti, 1999). All of the above mechanisms
contribute together to promote pathogenesis (Leigh and Coplin,
1992). A comprehensive representation of the mode of Xoo
infection in rice is illustrated in Figures 1 and 2.

Host-Mediated Disease Resistance
The pathogen infects by evading or compromising the host defense
responses. In doing so, the pathogen escapes the recognition by host
receptors, mitigates or inhibits downstream signaling in the host, or
takes over the host signaling mechanism to favor establishment of
disease. To counter this, plants have also developed several receptors
and sensors that interact with microbial components and nullify
their effect. A unique strategy has been adopted to improve the
immunity in crops by enhancing the recognition spectrum of the
host plant’s own immune system (Lacombe et al., 2010). It involves
the transfer of pathogen-associated molecular pattern (PAMP) like
perception system across plant families and provides broad-
FIGURE 2 | Disease life cycle of the rice bacterial blight caused by bacteria- Xoo, including the influence of disease secondary host plant on disease severity.
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spectrum disease resistance. Plant immunity has been categorized
into two levels based on microbial component recognition. The first
and second level of immunity is known as basal immunity [PAMPs-
triggered immunity (PTI)] and gene-for-gene resistance [effector
triggered immunity (ETI)], respectively (Jones and Dangl, 2006;
Monaghan and Zipfel, 2012). Both PTI and ETI are mediated by
receptor kinase proteins localized in plasma membrane and
nucleotide binding (NB) leucine-rich repeat (LRR) proteins and
other factors localized in cytoplasm respectively (Jones and Dangl,
2006; Macho and Zipfel, 2014). PTI provides quantitative resistance,
Frontiers in Plant Science | www.frontiersin.org 5
and ETI provides qualitative resistance in plant pathogen
interaction (Zhang and Wang, 2013). Rice-Xoo interaction is an
exclusive example of qualitative resistance, i.e., major gene conferred
resistance (Zhang and Wang, 2013). The major disease resistance
genes of rice, which provide resistance to Xoo, fall under either ETI
or PTI or may fall under an additional mechanism, different from
ETI or PTI (Hu et al., 2017).

One important and unique feature that is typical of qualitative
resistance of rice against Xoo is that one third of the major disease
resistance genes are recessive genetically (Zhang and Wang, 2013;
A

B

FIGURE 3 | The schematic representation for the molecular signaling involved during host and pathogen interaction. (A) Hijacking host key genes (SWEET11/13/14)
by pathogen; (B) utilization of host metabolic resources like Kreb’s intermediate by pathogen.
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Hu et al., 2017). Out of the 44 known R-genes, at least 11 have been
cloned and characterized (Xa1, Xa3/Xa26, Xa4, xa5, Xa10, xa13,
Xa21, Xa23, xa25, Xa27, and xa41) (Table 1) (Tian et al., 2014;
Wang et al., 2014a; Wang et al., 2014b; Cao et al., 2018). Of the
remianing R genes, at least nine have been fine-mapped on different
chromosome so far, viz., Xa2, Xa4, Xa7, Xa22, Xa30, Xa33, Xa38,
Xa39, and Xa40 (http://www.mshigen.nig.ac.jp/rice/oryzabase/gene/
list). Interestingly, mutation in rice lines have also produced
important R genes/alleles such as Xa1, xa5, xa13, Xa23, xa25,
Xa26/Xa3, Xa27, and xa41 (Nakai et al., 1988; Song et al., 1995;
Yoshimura et al., 1998; Gao et al., 2002; Lee et al., 2003; Iyer et al.,
2004; Sun et al., 2004; Gu et al., 2005; Chu et al., 2006; Liu et al., 2011;
Wang et al., 2015; Hutin et al., 2015) (Table 1). Different R-genes
encodes different types of proteins wherein Xa1 encodes NB-LRR
type protein (Yoshimura et al., 1998) and confers resistance to Xoo
isolates by recognizing TALEs (Ji et al., 2016). Xa21 and Xa3/Xa26
encode plasma membrane localized LRR receptor like kinase
proteins and confer race specific resistance to Xoo (Song et al.,
1995; Li et al., 2012). Xa4 encode cell wall associated protein kinase
and boosts resistance to Xoo by strengthening the cell wall (Hu et al.,
2017). The recessive gene xa5 encodes gamma subunit of the basal
transcription factor IIA 5 (TFIIAg5) and is a substitution variant of a
single amino acid V39E (Iyer andMcCouch, 2004; Yuan et al., 2016).
The non-variant version of the basal transcription factor is required
for survival of Xoo in rice. The genes, xa13, xa25, and xa41, encode
transmembrane proteins (Chu et al., 2006; Liu et al., 2011; Hutin
et al., 2015; Cheng et al., 2017), which are basically sugar
transporters, and the dominant alleles of these genes are
specifically induced by TALEs produced by the pathogen for
establishing infection. Xa10 encodes an ER membrane protein,
which elicits Ca2+ depletion in ER membrane inducing host cell
death (Tian et al., 2014).Xa23 is known to be an executor R gene that
encodes a protein with 113 amino acid residues. The transcription of
Xa23 is triggered by AvrXa23, a TALE from Xoo (Wang et al., 2015).
Xa27 encodes apoplast protein, which triggers thickening of the
secondary cell wall of the vascular bundle elements (Gu et al., 2004).
Both dominant and recessive like Xa1, Xa4, Xa21, xa5, and xa13
confer race specific resistance to Xoo, respectively, whereas the
recessive alleles of genes such as xa1, xa4, and xa21 and dominant
alleles of Xa5 and Xa13 are susceptible to Xoo (Zhang and Wang,
2013). The cloned R genes, its cognate Avr genes, and the nature of
the resistance of R genes have been summarized in Table 2.
INTROGRESSION OF NOVEL BB
RESISTANCE GENES FROM WILD
RELATIVES OF RICE

The genus Oryza includes two cultivated species of rice, i.e., O.
sativa and O. glaberrima (2n = 24, genome type AA) and 22 wild
species (2n = 24, 48) containing an array of genome types,
including those belonging to AA, BB, CC, BBCC, CCDD, EE, FF,
GG, KKLL, and HHJJ (Goicoechea et al., 2010). The Oryza,
belonging to wild species are considered as a repository of genetic
diversity that can be an asset for crop improvement. Although
Frontiers in Plant Science | www.frontiersin.org 6
wild relatives of rice are atrocious to the cultivated varieties in
terms of many agronomic traits, they are potential genetic
resource with tremendous genetic diversity (Ali et al., 2010).
Presence of adaptive traits that are often lacking in cultivars
renders them vulnerable to several biotic and abiotic stresses,
while a majority of the wild rice can withstand harsh biotic and
abiotic environmental conditions. Cultivated rice has been the
source of many BB resistance genes, and introgression of these
genes into elite varieties/hybrids has been done through
conventional breeding or also through marker-assisted
breeding (MAB). However, transfer of genes from wild species
to cultivated types brings with it a set of challenges such as hybrid
sterility, linkage drag, and incompatibility barriers. So far, a
handful of BB resistance genes have been identified and
introgressed from related wild species of Oryza into cultivars
(Nino-Liu et al., 2006; Sanchez et al., 2013). With the advent of
molecular and genomic tools such as trait-associated DNA
markers, high-throughput marker-assisted genotyping rapid
identification of BB resistant sources and the process of their
introgression into elite cultivars can be accelerated tremendously.

The first BB resistance gene to be cloned and characterized in
the rice was Xa21. It was originally identified and introgressed
from an accession of O. longistaminata (AA genome), and the
gene encodes a receptor kinase like protein and provides broad-
spectrum resistance against BB (Song et al., 1995). Xa21 has been
transferred to several rice cultivars and hybrids through marker-
assisted breeding (MAB) (Williams et al., 1996; Singh et al., 2001;
Perez et al., 2008; Sundaram et al., 2008; Balachiranjeevi et al.,
2018). Additional broad-spectrum BB R-gene Xa23 (encoding
executor R protein) was transferred into Asian cultivated rice
from O. rufipogon (AA) (Zhang et al., 2001). Various wild species
ofOryza pertaining to secondary gene pool have also assisted as a
source of BB R-genes such as Xa27 from O. minuta (BBCC)
and Xa29(t) from O. officinalis (CC) (Amante-Bordeos et al.,
1992; Tan et al., 2004; Gu et al., 2005). Other BB resistance genes
isolated from wild relatives and characterized with the help of
molecular markers and genomic tools include Xa10 (Gu et al.,
2008; Tian et al., 2014), Xa30 (O. rufipogon) (Jin et al., 2007),
Xa32 (O. australiensis) (Zheng et al., 2009), and xa32
(O. meyeriana) (Ruan et al., 2008), Xa32t (O. australiensis),
Xa33 (O. nivara) (Natrajkumar et al., 2012), Xa35t (O.
minuta), and Xa38 (O. nivara) (Cheema et al., 2008). A novel
locus on chromosome 12 of O. latifolia (wild allotetraploid rice
species) was identified recently, and it confer race specific
resistance of Xoo strain PXO339 (Angeles-Shim et al., 2020).
Based on these developments, it can be inferred that wild
relatives of Oryza are expected to contribute significantly in
developing durable BB resistant rice varieties. Whole genome
sequencing of wild rice will expedite identification of resistance
genes from the wild relatives of rice and may offer insights about
the the pathways associated with the evolution of different
resistance genes.

In additional to wild rice resources, it is generally accepted
that durable and broad-spectrum resistance against plant
dieseases can be enhanced by deployment of quantitative trait
loci (QTLs) along with major genes so that both vertical and
August 2020 | Volume 11 | Article 1152
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horizontal resistance can be achieved. In the recent past, a few
studies highlight the role of QTLs with respect to resistance/
tolerance against BB of rice. Even though few QTLs associated
with tolerance/resistance to BB have been reported earlier, most
Frontiers in Plant Science | www.frontiersin.org 7
of these QTLs mapped closely to already identify major
resistance genes (Li et al., 1999). Five major QTLs were maped
on various chromosomes for African resistant Xoo strains Xoo.
Various loci on different chromosomes such as 1, 7, 9, 10, and 11
TABLE 1 | Genes conferring resistance to bacterial blight pathogens.

S.No. Gene Chr.
No.

Source Origin Resistant to races Reference

1 Xa1 4 Kogyoku Japan JR I Yoshimura et al., 1998
2 Xa2 4 Tetep Vietnam JR II He et al., 2006
3 Xa3/

Xa26
11 Wase Aikoku3, Java-14, Chugoku-45,

Cempocelek
Japan PR 1,2,4,5 and All JR Kaku and Ogawa, 2001; Sun et al., 2004

4 Xa4 11 TKM 6, IR 20, IR 22 India PR 1, 4, 5, 7, 8 and 10 Wang et al., 2001
5 xa5 5 Aus boro lines (e.g. DZ192),

DV85, DV86, DZ78
Bangladesh PR 1, 2, 3, 5,7, 8, 9,10 Iyer and McCouch, 2004

6 Xa6 11 Zenith USA PR 1 Sidhu et al., 1978
7 Xa7 6 DV85, DV86, DZ78 Bangladesh PR 1, 2, 3, 5, 7, 8,10 Lee and Khush, 2000; Porter et al., 2003
8 xa8 7 PI231128 USA PR 5, 8 Sidhu et al., 1978; Singh et al., 2002
9 xa9 11 Khao Lay Nhay, Sateng Laos PRs Singh et al., 1983; Ogawa, 1988
10 Xa10 11 Cas 209 Senegal PR 2, 5, 7, JR Yoshimura et al., 1983; Kurata and

Yamazaki, 2006
11 Xa11 3 IR8, IR944 Philippines JR IB, II, IIA, V Mew, 1987
12 Xa12 4 Kogyoku,Tetep, Java-14 Japan IR V Mew, 1987
13 xa13 8 BJ1,Chinsurah Boro II India PR 6 Chu et al., 2006
14 Xa14 4 TN1 Taiwan PR 5, 8 Oryzabase, 2006
15 xa15 ND XM41 mutant ND JRs Nakai et al., 1988; Gnanamanickam et al.,

1999
16 Xa16 ND Tetep Vietnam JI H8581and H8584 Oryzabase, 2006
17 Xa17 ND Asominori South Korea JI H8513 Oryzabase, 2006
18 Xa18 ND IR24, Toyonishiki, Miyang23 Philippines,

Japan
BI-BM8417and BM8429 Liu et al., 2004; Oryzabase, 2006

19 xa19 ND XM5 (mutant of IR24) ND PR 1, 2, 3, 4, 5 and 6 Lee et al., 2003; Oryzabase, 2006
20 xa20 ND XM6 (mutant of IR24) ND JI Taura et al., 1992
21 Xa21 11 O. longistaminata Africa, Mali PR 1, 2, 3, 4,5, 6, 7, 8

and 9
Song et al., 1995

22 Xa22 11 Zhachanglong China CRs (BSR) Wang et al., 2003; Sun et al., 2004
23 Xa23 11 O. rufipogon (CBB23) China/

Cambodia
All PR, JR, CR, IR Zhang et al., 1998; Zhang et al., 2001

24 Xa24(t) 2 DV85, DV86, Aus 295 Bangaladesh PR 6, CRs Khush and Angeles, 1999; Lee and Khush,
2000

25 xa25/
Xa25(t)

12 Minghui 63, HX-3 China PR 1,3 4, and to CR Amante-Bordeos et al., 1992;
Lee et al., 2003

26 Xa26 (t) 11 Minghui 63, Nep Bha Bong China PRs (BSR) Yang et al., 2003; Sun et al., 2004
27 Xa27 6 O. minuta IRGC101141 Philippines PR 2, 5 Gu et al., 2004; Gu et al., 2005 and Lee

et al., 2003
28 xa28(t) ND Lota Sail Bangladesh PR 2, 5 Lee et al., 2003
29 Xa29(t) 1 O. officinalis (B5) ND CRs Tan et al., 2004
30 Xa30(t) 11 O. rufipogon (Y238) India IR Tan et al., 2004
31 Xa31(t) 4 Zhachanglong China CRs Wang et al., 2009
32 Xa32(t) 11 O. australiensis ND PR PXO339 Chen et al., 2002
33 xa33(t)/ 6 Ba7, O. nivara Thailand TRs Korinsak et al., 2009

Xa33 (t) Natrajkumar et al., 2012
34 xa34(t)/Xa34

(t)
1 Pin Kaset, O. brachyantha Sri Lanka TRs Korinsak et al., 2009; Ram et al., 2010

35 Xa35(t) 11 O. minuta (Acc.No, 101133) Philippines PRs Guo et al., 2010
36 Xa36(t) 11 C4059 China PR Miao et al., 2010
37 Xa37(t) ND Unknown ND Unknown
38 Xa38 ND O. nivara IRGC81825 ND IRs Cheema et al., 2008

Kaur et al., 2006
39 Xa39 11 FF329 ND CRs, PRs Zhang et al., 2014
40 Xa40 (t) 11 IR65482-7-216-1-2 KRs Kim et al., 2015
41 Xa41(t) ND Rice germplasm ND Various Hutin et al., 2015
42 xa42 3 XM14 (mutant of IR24) ND JRs Busungu et al., 2016
43 Xa43(t) 11 IR36 (P8) ND KRs Kim and Reinke, 2019
44 xa44 (t) 11 IR73571-3B-11-3-K3 (P6) ND KRs Kim, 2018
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explained as much as 13%, 37%, 13%, 11% and 15% of
phenotypic variation in terms of resistance, respectively
(Djedatin et al., 2016). A major qBBS11 was identified by
composite interval mapping of MAGIC population derived
from Japonica, and it explained 31.25% of the phenotypic
variation (Kim and Reinke, 2019), and this QTL was later
renamed as Xa43(t). On closer examination, xa34(t) has been
identified to co-localize along with qABB-1 on rice chromosome
1, which is a resistance QTL induced by the African Xoo strain
(Chen et al., 2011).
ANALYZING RESISTANCE GENE
ANALOGUES (RGAS) AS A NOVEL TOOL
TO IDENTIFY BLIGHT RESISTANCE GENE

Resistance genes analogs (RGAs) are a large class of disease
resistance associated genes and they can be categorized into two
major groups, namely NBS-LRR and transmembrane LRR (TM-
LRR) (Hammond-Kosack and Jones, 1997; Sekhwal et al., 2015).
Others include pentatricopeptide repeats (PPRs) and apoplastic
peroxidases. NBS-LRR class of RGAs targets effector protein of
pathogen, thus mediate effector triggered immunity (ETI) in host
cell, whereas TM-LRR class of RGAs mediates PTI (Chisholm
et al., 2006). NBS-LRR represents the most abundant and best-
known family of RGAs contributing to disease resistance in
plants (Porter et al., 2009). Analysis of whole genome sequences
of japonica Nipponbare and indica 93-11 suggested presence of
RGAs in pseudogenes, with 347 RGAs in Nipponbare and 345 in
93-11 as pseudogenes (Luo et al., 2012). Interestingly, most of the
identified pseudogenes have strong identity with one or the other
Frontiers in Plant Science | www.frontiersin.org 8
NBS protein (Liu et al., 2011). Further, many studies have shown
that the RGAs are randomly distributed on chromosome either
in large or small clusters (Ghazi et al., 2009), for example, 50%
NBS and 74.3% NBS-LRR class of RGAs were found to be
clustered in rice (Yang S. et al., 2006). The distribution of
RGAs in clustered manner potentially functions like reservoir
of genetic variation, which may be responsible for bringing the
evolution of new R genes (Michelmore and Meyers, 1998; Young,
2000; Zhou et al., 2007). On the long are of chromosome 11,
cluster of six Xa21 like RGAs was reported. The NBS-LRR
containing genes cluster was also predicted at 0.6 Mb away
from Xa21, which indicates the existance of extra NBS-LRR–type
genes for activation and expression of the Xa21 gene (Ghazi
et al., 2009). Therefore, from the application point of view, RGAs
provide enormous opportunities as they can be used as
candidates’ genes for R-gene mapping and cloning, co-
localization of QTLs, SNP marker development, and for
resistance breeding (Liu et al., 2007; Huang et al., 2012).
MODERN APPROACHES FOR
DEVELOPMENT OF BB RESISTANT RICE

Molecular Breeding for BB Resistance
in Rice
Efforts have been made to improve resistance of rice against BB
through conventional and modern breeding techniques. This is
achieved through standard crossing and/or backcrossing an elite
rice variety/hybrid with the genotype carrying the resistance gene
to BB. The practice not only reduces the use of chemical
pesticides but also offers a sustainable way for management of
TABLE 2 | List of cloned rice R genes, cognate Xanthomonas oryzae Avr genes, and nature of resistance of R genes (adapted from Jiang et al., 2020).

S.No. Gene Chromosome
number

Encoded Protein Cognate Avr
gene

Encoded
Protein

Resistance
nature

Reference

1 Xa1 4 Nucleotide binding site–leucine rich
repeat (NBS-LRR)

PthXo1/Tal4/
Tal9d

ND Race
specific

Yoshimura et al., 1998; Ji et al., 2016

2 Xa3/Xa26 11 Leucine-rich repeat receptor-like
protein kinase (LRR-RLK)

AvrXa3 ND Broad
spectrum

Sun et al., 2004; Li et al., 2004; Xiang
et al., 2006

3 Xa4 11 Wall-associated kinase (WAK) ND ND Race
specific

Hu et al., 2017

4 xa5 5 TFIIAg5 transcription factor Avrxa5/PthXo7 TAL
effector

Race
specific

Jiang et al., 2006; Sugio et al., 2007; Zou
et al., 2010

5 Xa10 11 Executor R protein/ AvrXa10 TAL
effector

Broad
spectrum

Tian et al., 2014

6 xa13
(OsSWEET11)

8 SWEET-type protein/nodulin 3
family protein

PthXo1 TAL
effector

Race
specific

Chu et al., 2006; Yang B. et al., 2006;
Yuan et al., 2009

7 Xa21 11 Leucine-rich repeat receptor-like
protein kinase (LRR-RLK)

RaxX ND Broad
spectrum

Song et al., 1995; Pruitt et al., 2015

8 Xa23 11 Executor R protein AvrXa23 TAL
effector

Broad
spectrum

Wang et al., 2014b; Wang et al., 2015

9 xa25
(OsSWEET13)

12 SWEET-type protein/nodulin 3
family protein

PthXo2 TAL
effector

Race
specific

Liu et al., 2011; Zhou et al., 2015

10 Xa27 6 Executor R protein AvrXa27 TAL
effector

Broad
spectrum

Gu et al., 2005

11 xa41
(OsSWEET14)

11 SWEET-type protein AvrXa7/
PthXo3/TalC/
Tal5

TAL
effector

Broad
spectrum

Antony et al., 2010; Yu et al., 2011; Hutin
et al., 2015; Hutin et al., 2015
TFIIA, transcription factor IIA; SWEET, sugar will eventually be exported transporter; TAL, transcription activator like; ND, not determined.
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this disease. Presence of several virulent bacterial strains in the
rice growing areas throughout the world necesssitates cultivation
of such rice varieties, which are endowed with multiple resistance
genes as gene-pyramids. To date, identification of 44 R genes
conferring resistance to diverse Xoo races has been completed
(Busungu et al., 2016; Neelam et al., 2019); majority of these
identified genes come from O. sativa ssp. indica or japonica. As
mentioned earlier, a set of resistance genes have been also
identified from wild species of rice such as O. longistaminata,
O. rufipogon, O. minuta, and O. officinalis (Bhasin et al., 2012;
Kumar et al., 2012; Wang et al., 2014a; Zhang et al., 2014; Kim
et al., 2015) (Table 1).

It is pertinent to note that 14 R-genes (xa5, xa8, xa13, xa15,
xa19, xa20, xa24, xa25, xa26b, xa28, xa31, xa32, xa33, and xa34)
out of 44 known R-genes are recessive, while the others are
dominant in their inheritance, and Xa27 has shown both
dominant and semi-dominant inheritance in different genetic
backgrounds (Gu et al., 2004; Chen et al., 2011; Kim et al., 2015;
Cao et al., 2018) (Table 1). The incorporation of several
resistance (R) genes has been facilitated through marker-
assisted backcrossing (MABC) or conventional backcross
breeding, and resistance breeding has played a significant role
in defending rice from the attack by the pathogen (Sundaram
et al., 2008; Sundaram et al., 2009; Perumalsamy et al., 2010; Hari
et al., 2011; Hari et al., 2013; Pandey et al., 2013; Kim et al., 2015;
Balachiranjeevi et al., 2015; Abhilash et al., 2016; Abhilash et al.,
2017). A rice derived BB resistance gene Xa38 was incorporated
into a BB susceptible rice variety PB1121 and APMS 6B (a rice
maintainer line), either singly or in combination with other BB
resistance genes, using a modified MABC approach, and
improved lines showed broad spectrum of resistance against
different Xoo races (Ellur et al., 2016; Yugander et al., 2019). Rice
varieties carrying single resistance genes (e.g., Xa4) are not
recommended for long term cultivation, as acute selection
pressure on the pathogen results in rapid evolution of
compatibility between Xoo and rice (Mew et al., 1992).
Harnessing broad-spectrum resistance through pyramiding
multiple resistance genes can be helpful to avoid such
breakdowns. The probability of breakdown in cases of
resistance conferred by two or more genes in a single genotype
is much lower than that of a single gene controlling resistance
(Mundt, 1990). For instance, R-genes in combination (Xa4/xa5
and xa5/Xa21) offer higher level of resistance compared to both
parental level and single gene (Sattari et al., 2014; Pradhan et al.,
2016). Huang et al. (1997) developed four-gene pyramid lines
comprising Xa4, xa5, xa13, and Xa21 genes in IR24 cultivar
genetic background through MABC, and the gene-pyramid lines
showed broad spectrum disease resistance. Several research
groups have performed BB gene pyramiding in rice using
MABC techniques, e.g., marker-assisted introgression of xa5,
xa13, and Xa21 in the genetic background of PR106, Samba
Mahsuri, Triguna, and Jalmagna (Singh et al., 2001; Sundaram
et al., 2008; Sundaram et al., 2009; Pradhan et al., 2015).
Similarly, xa13 and Xa21genes pyramiding was carried out in
the genetic background of Pusa Basmati 1 (Joseph et al., 2004).
Table 3 offers a comprehensive list of BB resistance genes that
Frontiers in Plant Science | www.frontiersin.org 9
have been deployed or in the process of deployment in rice
through MAB.

Development of Transgenic Rice Resistant
to BB
A potential strategy to control BB disease is the genetic
transformation of elite cultivars using cloned resistance genes.
Compared to conventional breeding, it is less time-consuming
and avoids the problem of linkage drag. The first transgenic line
containing Xa21, T-309, was developed in japonica rice by Wang
et al. (1996). Later, Xa21 was introduced into several varieties
such as IR 72, MH 63, and IR 51500 (Datta et al., 2002; Tu et al.,
1998; Tu et al., 2000). Similarly, an elite restorer line genetically
transformed with Xa21 has shown marked level of resistance to
BB while retaining its original traits (Zhai et al., 2004). Field trials
of Xa21 transgenic rice conducted in India, Philippines, and
China led to the identification of BB-resistant lines in transgenic
IR 72 (Datta, 2004). Transgenic lines carrying one or the other
Xa genes were developed for functional characterization of the
gene; however, none of these could be commercialized due to
regulatory and policy bottlenecks. Hence, conventional breeding
combined with marker-assisted breeding or genomics assisted
breeding is the preferred strategy for developing resistant lines/
varieties to control BB disease.

Mining of Novel Alleles of BB Resistance
Genes
Mining superior alleles from different gene pools of any crop
provides opportunity to access novel and effective alleles for
biotic and abiotic stresses, which can be deployed in plant
breeding for cultivar development (Ramkumar et al., 2010). To
identify novel or superior allele of the known gene among the
population, PCR-based approach is widely used. In this method,
PCR amplification of homologs from different wild and
cultivated germplasm is performed and analyze the PCR
amplicon. This method is known as allele mining, and it has
been widely studied for BB resistance genes such as Xa7 (Utami
et al., 2013), Xa27 (Bimolata et al., 2013), Xa26, Xa21, and xa5
(Bimolata et al., 2015), etc. This method will also reveal the
degree of conservation among genes and other regulatory regions
across the species. As mentioned earlier, fast adaptation of the
pathogen races causes the failure of disease resistance in varieties
containing single resistance genes and even two genes. Therefore,
discovery of novel sources of resistance becomes crucial to match
the plasticity of rapidly evolving pathogenic Xoo strains (Barry
et al., 2007). In this context, surveying the genic/allelic variation
available in landraces (Borba et al., 2009), traditional varieties,
and wild relatives (Barbier, 1989) of rice will contribute to obtain
effective and durable BB resistant varieties. One such example is
Xa7, which has been used to develop BB resistance rice varieties
(Perez et al., 2008; Utami et al., 2010). Allele mining approach
was applied in the local rice accessions of Indonesia
(Parekaligolara) to isolate resistant alleles of Xa7 (Utami et al.,
2013). Subsequently, these accessions containing variant alleles
with respect to Xa7 have been used as for developing new BB
resistant rice lines (Utami et al., 2013). Analysis of variation in
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amino acid residues between the resistant and susceptible lines
has revealed co-linear non-synonymous substitutions of lysine-
cysteine-valine to serine-serine-threonine, respectively. Another
BB resistance gene, Xa27 provides resistance to rice against only
those strains of Xoo harboring the avirulence gene avrXa27. Both
dominant and recessive alleles of Xa27 gene code for same
protein without any changes in the protein sequence, but
polymorphism exists in their promoter sequences. Deletion of
three nucleotides AGA at 51st position in the promoter of
recessive allele (i.e., non-functional allele) of the gene has been
reported (Gu et al., 2005). Twenty-seven alleles of Xa27 gene
have been identified in O. nivara and O. sativa at both promoter
as wel as 5´UTR region. Such nucleotide diversity analysis will
certainly help in diversification of gene function and enhancing
the intensity of BB resistance (Bimolata et al., 2013). The
nucleotide diversity analysis of naturally occurring BB
resistance genes (Xa21, Xa26, and xa5) alleles was carried out
in diverse cultivars of Oryza species and their wild relatives
(Bimolata et al., 2013). The highest singleton variable sites (SVS)
and nucleotide diversity were reported in Xa26, whereas
maximum frequency of single nucleotide polymorphisms
(SNPs) was observed in Xa21. Many substitutions and InDels
resulted in nucleotide and amino acid polymorphism at Xa21
and Xa26 loci, which also have pathogen recognition LRR
domain, and finally resulted in non-functional gene. Transition
bias was reported in all the three alleles of Xa21, Xa26, and xa5,
where G to A transition was favored more (Bimolata et al., 2015).
Functional characterization of the new alleles will help in
deciphering their actual roles in resistance against the
pathogen. Alternative promising approach is RNA interference
(RNAi) technique, which is used to silence molecules involved in
Frontiers in Plant Science | www.frontiersin.org 10
regulating resistace genes negatively (Gust et al., 2010; Li C. et al.,
2012). The final outcome results as a stronger and durable
defense response, which leads to reduce disease manifestation
and progression.

Mutagenesis and TILLING
Targeting induced local lesions in genomes (TILLING) is a reverse
genetic non-transgenic technique that is exploited to detect induced
mutations in the target genes for the improvement of both plant and
animal species (Barkley andWang, 2008). Recently, with the aim to
develop disease resistance varieties and creating useful genetic
variation for multiple traits, TILLING population have been
generated in many economically important plants like wheat
(Fitzgerald et al., 2010), barley (Talamè et al., 2008), tomato
(Piron et al., 2010), sunflower (Sabetta et al., 2011), and melon
(González et al., 2011) by employing either chemical or physical
mutagens. In rice, Till and colleagues (2007) could successfully
generate a high-density TILLING population (1 mutation/250–300
kb) in Nipponbare variety of rice.Wu et al. (2005) demonstrated the
efficacy of TILLING approach for identifying mutant rice lines with
enhanced resistance against BB, rice blast and tungro virus, with a
frequency ranging from 0.01 to 0.1%. They generated 60,000 IR64
TILLING mutant lines by using chemical and physical mutagens,
out of which 38,000 unique lines were advanced to M4 generation
for forward and reverse TILLING. In rice, the technique has been
employed to isolate various rice mutants by targeting important
agro-economical genes such as OsBZIP for rice blast resistance (Till
et al., 2007); OsTPS1c OsDREB, OsSNAC1, OsAKT1, OsHKT6,
OsNSCC2, OsHAK11, OsSOS1, OsAHP1, and OsPLA1 for abiotic
resistance (Till et al., 2007; Suzuki et al., 2008; Casella et al., 2013;
Hwang et al., 2016);OsSD1 for regulating plant height (Casella et al.,
TABLE 3 | Cultivars improved for bacterial blight resistance through breeding/marker-assisted breeding.

S.No. Resistance genes Variety/Parental line References

1. Xa21 Swarna Reddy et al., 1997
2. Xa21 Minghui63 Chen and Zhang, 2000
3. Xa21 KMR3R Hari et al., 2011
4. Xa33 Samba Mahsuri Natrajkumar et al., 2012
5. Xa4, xa5 Angke Sattari et al., 2014
6. xa5, xa13 Triguna Sundaram et al., 2009
7. xa13, Xa21 Pusa Basmati1 Joseph et al., 2004
8. Xa7, Xa21 Minghui63 Zhang et al., 2006
9. Xa21, xa13 Pusa6B, PRR78 Basavaraj et al., 2010
10. Xa21, xa13 Taraori Basmati, Basmati386 Pandey et al., 2013
11. Xa21, xa13, sd-1 Type 3 Basmati Rajpurohit et al., 2010
12. Xa4, xa-5, Xa21 Mangeubyeo Suh et al., 2013
13. Xa4, Xa7, Xa21 TGMS1 Perez et al., 2008
14. xa5, xa13, Xa21 Samba Mahsuri Sundaram et al., 2008
15. xa5, xa13, Xa21 Jalmagna Pradhan et al., 2015
16. Xa5, xa13, Xa21 ADT43, ASD16 Perumalsamy et al., 2010
17. xa5, xa13, Xa21 IR65598-112 Sanchez et al., 2000
18. xa5, xa13, Xa21 PR106 Singh et al., 2001
19. xa5, xa13, Xa21 IR64 Davierwala et al., 2001
20. Xa4, xa5, Xa7 IR64 Leung et al., 2004
21. Xa21, xa13, Xa38 Pusa Basmati 121 Ellur et al., 2016
22. Xa4, xa5, xa13, Xa21 Lalat, Tapaswini Dokku et al., 2013
23. Xa4, xa5, xa13, Xa21 IR24 Huang et al., 1997
24. Xa4, xa5, Xa13, Xa21 Mahsuri Guvvala et al., 2013
25. Xa4, xa5, xa13, Xa21 Swarna, IR64 AICRIP, 2008
26. Xa7, Xa21, Xa22, Xa23 Huahui1035 Huang et al., 2012
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2013); OsHd1 and OsSAD flowering (Suzuki et al., 2008; Casella
et al., 2013); OsACOS12 for fertility (Li et al., 2016); and OsBADH2
for aroma (Casella et al., 2013).

TILLING population can also be used for forward genetic
studies. Screening of 60,000 IR64 (rice indica cultivar) mutants
led to identification of several loss or gain of resistance mutants
of showing resistance or enhanced susceptibility to BB, blast, and
tungro diseases (Wu et al., 2005). EMS induced mutant in the
genetic background of Nagina 22 rice variety has been developed
and utilized for various genetic studies in India (Sevanthi et al.,
2018). It may be worthwhile to screen the rice lines for resistance
against BB and other biotic stress and identify novel genetic
variations. In addition to the above, we have generated a large
sized EMS mutagenized population of Samba Mahsuri and
screened them for resistance against bacterial blight.
Preliminary results show that few of the mutant lines of Samba
Mahsuri display enhanced resistance (Ershad Gopi et al., 2017).
These mutagenized populations can be shared with researchers
or breeders for rapid screening for a range of phenotypes, and the
TILLING populations can serve as a public resource for the
research community. For instance, IRRI, Philippines has
distributed around 15,000 mutant lines of IR64 to researchers
worldwide for detection of novel phenotypes, including
sensitivity to plant hormones, phytic acid abundance, response
to salinity and drought, and non-host resistance (Wu et al.,
2005). A public TILLING support tool (http://tilling.ucdavis.edu/
index.php/RiceTilling) and rice mutant database (IRIS; http://
www.iris.irri.org) have been established in rice.

Sequencing Based High-Throughput
Mutation Detection Systems
In rice, NGS based TILLING protocols are well documented
(Burkart-Waco et al., 2016) and it is a matter of time before the
strategy is widely adopted to identify genes associated with
resistance/susceptibility against bacterial blight pathogen in rice.
Unlike NGS, where one can obtain the exact information of
nucleotide base change and its position caused due to mutagen,
high-resolutionmelting (HRM) identifies the mutation based on the
differences in the melting curve of fragments of mutant and wild
type. HRM technique is particularly important for analyzing the
target genes that consist of multiple exons of smaller lengths.
Though NGS and HRM techniques are still costlier, their capacity
to generate results within a very short span of time is indeed
encouraging. NGS- and HRM-based TILLING or Eco-TILLING
strategy could uncover a new set of genes controlling BB resistance,
and hence expedite the progress of developing new rice cultivars
with greater level of resilience. In this context, it is worthwhile to
note that International Rice Research Institute (IRRI), Philippiens
along with other collaborators have sequenced ~ 3000 rice
accessions and the rice lines can be mined for novel alleles of
major, cloned and well characterized genes conferring BB resistance.

Genome Editing
Breeding traits of agronomic significance largely relies upon
existing allelic variation and involves repeated cycles of
crossing and selection to obtain a crop genotype with desired
Frontiers in Plant Science | www.frontiersin.org 11
level of improvements, which may consume considerable time
and efforts (Sundaram et al., 2014). These limitations can be
overcome by using emerging genome editing technologies.
Genome edit ing based on art ific ia l nucleases is a
transformative technology that has the ability to modify plant
genomes in an accurate and expectable manner. So far, four
sequence-specific nucleases, i.e., transcription activator-like
effector nucleases (TALENs) (Christian et al., 2010), zinc finger
nucleases (ZFNs) (Kim et al., 1996), meganucleases (Smith et al.,
2006) and the CRISPR/Cas (CRISPR-associated) nucleases, have
been successfully used in genome editing in many crop plants
(Bortesi and Fischer, 2015). In principle, all these technologies
can be used for modifying plant traits such as disease resistance.
For example, TALEN technology was applied successfully to
mutate a BB susceptible gene, Os11N3/OsSWEET14 promoter in
rice. The inability of the effector to bind to the promoter of
OsSWEET14, ultimately resulted in BB resistance (Li et al., 2012).
The Os11N3 is a sucrose-efflux transporter family gene (i.e.,
SWEET gene) whose expression gets activated by Xoo effectors
for the pathogen’s nutritional needs. By editing the effector-
binding element (EBE) of Os11N3, the virulence function of
effectors produced by Xoo was abolished, leading to improved BB
resistance (Li et al., 2013). CRISPR/Cas9 mutagenesis of another
susceptibility gene encoding sucrose transporter OsSWEET13
was performed to achieve BB resistance. Xoo effector/TALE
PthXo2 induces the expression of OsSWEET13 in host, which
subsequently resulted in establishment of Xoo and host
susceptibility (Zhou et al., 2015; Borrelli et al., 2018). The
expression of OsSWEET13 gene has been evidenced to be
activated by binding of the TALE, PthXo2 to EBE of its
promoter sequence (Xu et al., 2019). Genome edited lines
showed significantly higher level of resistance to pathogen
strains possessing the TALE. This study exemplified the fact
that the technology can be applied to elite rice varieties to edit
multiple genes simultaneously or sequentially to provide
stronger and durable resistance against majority of BB strains.
Furthermore, better understanding of SWEET genes and
CRISPR/Cas9-mediated genome editing tool has helped in
producing broad spectrum resistance in Kitaake, IR64 and
Ciherang-Sub1 rice varieties through genome editing (Oliva
et al., 2019; Xu et al., 2019). Recently, CRISPR/Cas9-mediated
genome editing in the promoter region EBEs of OsSWEET14
gene has been demonstrated to confer resistance in Super
Basmati rice lines against Xoo strain carrying AvrXa7 TALE
(Zafar et al., 2020).

Among the currently available nuclease-based genome editing
tools, CRISPR/Cas system is the latest and more popular
technology, which relies on RNA-guided engineered nucleases
(Jinek et al., 2012). CRISPR/Cas method employed for genome
editing consists of a Cas9 endonuclease targeting a specific
sequence of the genome defined by a single guide RNA. The
CRISPR/Cas technology is simple and efficient, more
importantly, has the ability to cleave even methylated DNA
(Hsu et al., 2013), and has less or no off-target mutations
(Shen et al., 2014). Therefore, CRISPR/Cas system is more
versatile for editing plant genomes with highly methylated
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CpG sites (Miao et al., 2013) and will the most desirable system
for editing sequences of rice susceptibility genes like
OsSWEET11, OsSWEET13, OsSWEET14, etc. Broad spectrum
resistance against Xoo was reported in the transgenic rice lines, in
which promoter region EBEs sequence of OsSWEET11,
OsSWEET13, and OsSWEET14 were edited through CRISPR/
Cas9 technology (Xu et al., 2019). Transgenic wheat plants with
mutated mildew resistance locus (MLO) obtained by CRISPR/
Cas9, and TALEN technologies showed improved resistance to
powdery mildew (Wang et al., 2014). With constant refinements
in the technical aspects with respect to specific targeting of the
desired gene sequence with precision, genome editing will
certainly be a method of choice for developing disease resistant
varieties in rice.

Genomic Selection (GS)
Current crop breeding approach largely depends on the robust
phenotyping and deployment of genetic markers. Major
limitation of marker-assisted selection in plant breeding is
use of biparental mapping population for QTL prediction and
its applicability with traits associated with major effect genes
but may work for polygenic traits that are controlled by many
genes of small-effect, and in general, such traits are crucial for
the improvement of new crop varieties (Heffner et al., 2009;
Crossa et al., 2017). To improve the crop selection procedure,
breeders have now adopting a newer model—a black box
approach ‘Genomic Selection Model’ that does not solely
depend on the prior knowledge about the effect or function of
individual genetic markers. In fact, GS involves huge set of
phenotyping surveillance along with all molecular marker
information which avoid biased marker effect estimates;
thereby, it can capture more of the variations that appears
due to small-effect QTLs (Heffner et al., 2009). Further, GS is an
improved form of MAS which concurrently estimates a
genomic estimated breeding value for all locus, haplotype, or
marker across the entire genome of each genotype. Therefore,
genomic selection offers opportunity to increase grain yield and
quality by rapid selection of superior genotypes and
accelerating breeding cycle in less time. In recent years, GS
and genomic-enabled prediction (GP) have been studied in rice
for enhancing grain yield by analyzing the genetics and the
statistical complexity, which includes environment interaction
with genotype that control trait phenotype (Spindel et al., 2015;
Xu et al., 2018). The genomic prediction model upon cross
validating 363 elite breeding lines from IRRI predicted with an
accuracy that ranged from 0.31 to 0.34 for grain yield and 0.63
for flowering time (Spindel et al., 2015). Similarly, Xu et al.
(2018) used 575 rice hybrids as a training population, and
362,760 potential hybrids were used to predict agronomic traits
such as branch number (primary and secondary) and per
panicle grain number and primary branch with accuracy of
36.12, 61.80, and 75.83%, respectively. It can be expected that,
in coming years, rice breeding will deploy GS model and GP
prediction to rapidly identify novel loci associated with BB
resistance and other productivity related traits and quickly use
them in breeding programmes.
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MOLECULAR OMICS APPROACHES FOR
STUDYING RICE-XOO INTERACTION

Transcriptome Analysis
In the last 15 years, more than 70 key genes providing resistance
to different plant pathogen have been identified, cloned and
characterized from different plant species (Sharma et al., 2009;
Sanseverino et al., 2010). Pathogen incursion can alter the
transcript levels of various host plant genes (Iqbal et al., 2005),
and several techniques have been developed in recent years to
study the differential expression pattern of host genes associated
with response to pathogen attack and resistance against it. Some
of these expression profiling techniques are cDNA microarray
(Schena et al., 1995), cDNA- amplified fragment length
polymorphisms (AFLP) (Vuylsteke et al., 2007), suppression
subtractive hybridization (Diatchenko et al., 1996), serial
analysis of gene expression (SAGE) (Velculescu et al., 1995;
Mardis, 2008), digital gene expression (DGE) (Audic and
Claverie, 1997), qPCR (Mortazavi et al. , 2008), etc.
Transcriptome analysis helps elucidate key genes and pathways
participating in defense signaling during plant pathogen
interaction (Glazebrook, 2001).

cDNA microarray study of a transgenic rice (TP309-Xa21)-
Xoo (P6 and K1avirulent and virulent strain respectively)
interaction observed 454 and 498 DEGs in the incompatible
and compatible interactions, respectively, of which co-regulated
genes were 237 (Li Q. et al., 2006). Ethylene receptor-like protein,
ethylene-insensitive protein, protein phosphatase, and ADH
were upregulated only in rice-Xoo incompatible interaction (Li Q.
et al., 2006). A genome-wide identification of defense response
genes was performed in xa13 gene mediated resistance plants
wherein 702 unique expressed sequences triggered by xa13 were
identified (Chu et al., 2004). Sequence analysis showed induction
of homologs to putative R-genes encoding NBS-LRR and XA21
like protein. There was also induction of gene homologs related
to host-pathogen interaction reported in other plant species, such
as PR proteins, peroxidases, WRKY transcription factors, GST,
RNA helicases, ubiquitins, catalase, ankyrin-like protein, and
cytochrome P450 (Chu et al., 2004). Microarray analysis after
infection by BXO43 strain of Xoo in the resistant variety of rice,
Ajaya (IET 8585), and susceptible variety, IR24, has revealed the
differential expression of 274 genes between and susceptible
genotypes (Grewal et al., 2012). Out of 274 genes, 152 and 122
were reported to be up- and down-regulated, respectively, in
IET8585 compared to IR24. Some of the major up-regulated
transcripts include chitinase precursor, WRKY69, Hin 1,
DREB1B, NB-ARC domain containing protein, glutathione S-
transferase (GST), cytochrome P450, harpin-induced protein,
lipoxygenase, and flavanoid 3-monooxygenase (Grewal et al.,
2012). It was interesting to note that several defense related
signaling molecules such as MAPKKK17 (Menges et al., 2008),
MAPKKK3 (Zipfel et al., 2004), and PP2C were found to be up-
regulated (Grewal et al., 2012). Wen et al. (2002) also conducted
an expression profile of 12 defense response genes where they
observed constitutive expression of these genes but significantly
induced under the influence of Xoo and the fungal pathogen
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causing blast disease, Pyricularia grisea. The RNA-Seq analysis of
resistant (CBB23; a rice line carrying Xa23 gene) and a
susceptible (JG30) rice gentotypes led to identify several DEGs
post infection by Xoo strain PXO99A. Moreover, several of the
DEGs were up-regulated in CBB23 were related to immune
responses like peroxidase, phytosulfokinase, RLKs, serine/
threonine kinase, TFs (WRKY, NAC, MYB, bZIP, AP2/ERF
etc.) and phytohormones (SA and ET) (Tariq et al., 2018). In
another RNA-Seq analysis, where CBB23 was challenged with
PXO99A and its mutant P99M2 exploited 1235 DEGs at defferent
time point (Wang et al., 2019). Publicly available Xoo infected
rice microarray data analysis revealed the importance of
mitochondria and chloroplast as an arena for up-regulated and
down-regulated genes in response to Xoo infection (Kong et al.,
2020). Therefore, the genes up-regulated in resistance varieties
can be targeted for improvement through molecular breeding
and transgenic approaches, and the rice genes that are up-
regulated in susceptibility reaction against Xoo could be
potential targets for silencing or genome editing.

Proteomics Analysis of Products Encoded
by Resistance Genes
Completion of sequencing of rice and Xoo genomes are
significant accomplishments in host-pathogen interaction
study. Even though genomes can evolve rapidly because of
either transposable elements movement or from epigenetic
changes, they are in general contemplated as highly static
compared to their extremely dynamic proteomes. Therefore,
there has been increased focus on elucidating functional aspect
of proteins involved in rice-Xoo interaction. Comparative
proteomics is emerging as a promising approach to develop a
global understanding of protein expression under various
conditions including attack by pathogen on the plant host
(Agrawal and Rakwal, 2011; Ding et al., 2012). Using
proteomic approaches, different biological processes including
protein–protein interaction, post-translational modification,
protein expression, etc. could be successfully analyzed during
plant development, particularly during stress conditions
(Hashiguchi et al., 2010). The induction of PR5 protein post
nitrogen application was reported in case of M. grisea infection
(Konishi et al., 2001). Stress related proteins such as superoxide
dismutase (SOD), heat shock proteins (HSP), and dehydrins are
induced in plant post rice yellow mottle virus (RYMV)
inoculation (Ventelon-Debout et al., 2004). Proteomic study
of sub-cellular organelles has been performed such as plasma
membrane, vacuolar membrane, mitochondria, and chloroplast.
Cytosolic and membrane protein study revealed the activation of
proteins related to defense such as thaumatin-like protein (TLP)
(PR5), probenazole-inducible protein 1 (PBZ10), (SOD), and
peroxiredoxin (Mahmood et al., 2006). Transgenic rice lines
overexpressing a TLP showed moderate level of resistance. After
proteomic analysis, 440 protein spots were detected, where 10
proteins, including TLPs, were differentially expressed (five
up-regulated and five down-regulated). TLP, ATP synthase
B chain, glycine cleavage H protein, and 2-Cys peroxiredoxin
were significantly up-regulated, whereas glycerol aldehyde
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dehydrogenase, salt induced protein, transketolase, and oxygen
evolving enhancer protein 2 were down-regulated. Out of 10
differentially regulated protein spots, two did not show a
substantial match with any known proteins (Mahmood et al.,
2006). A study on plasma membrane (PM) proteome in rice
revealed the involvement of at least eight PM-associated proteins
in BB defense out of 20 protein spots induced after Xoo infection
(Chen et al., 2007). These proteins were H+-ATPase, prohibitin
(OsPHB2), hypersensitive-induced response protein (OsHIR1),
quinone reductase, zinc finger, universal stress protein (USP), C2
domain protein, HSP, and protein phosphatase. A stable somatic
hybrid line SH76 was developed using wild rice O. meyeriana
and japonica rice cultivar (8411), which proteomic analysis
revealed differential expression of 77 proteins including stress
related proteins such as putative glutathione S- transferase,
ascorbate peroxidase, and mitochondrial chaperonin-60 (Yu
et al., 2008). Interestingly, differential induction stress
associated proteins have been reported upon Xoo challenge,
suggesting the likelihood of participation of mutual stress
pathways. Some of the important candidate proteins activated
in O. longistaminata post BB infection include cyclin-dependent
kinase C, germin-like protein, putative r40c1, glutathione-
dependent dehydroascorbate reductase 1 (GSH-DHAR1), and
Ent-isokaur-15-ene synthase (Kumar et al., 2015).

Metabolomics Analysis of Compounds
From Resistant Plants
Cell signaling is the first molecular event that occurs during
pathogen infection. Plant produces volatile metabolites/
hormones such as ethylene, methyl jasmonate, methyl
salicylate and nitric oxide as key mediators of host response to
pathogen/pest infection and for systemic acquired resistance
(Heuberger et al., 2014). These hormones conjugates with
other metabolites like jasmonate and isoleucine to provide
immunity (Staswick and Tiryaki, 2004). During plant-pathogen
interaction, many small size molecules of different class such as
homoserine, asparagine, and sphingolipids mediate signaling
(Heuberger et al., 2014) and regulated through cross-talk
between hormones like ethylene-jasmonate, nitric oxide, and
jasmonate (Lorenzo et al., 2003; Jian and Wu, 2005).

Metabolism impacts cellular physiology and plays an essential
role in biology. Recent advances in metabolomic analytical tool
provides opportunity to dissect the layers of plant metabolic
regulation, thus allowing bridging the gap between genome and
the phenome (Metallo and Vander-Heiden, 2013). It also aids in
identifying signature metabolites linked to agronomic traits,
thereby plays dynamic role in crop improvement (Kumar
et al., 2017; Sharma et al., 2018). Like other omics approach,
metabolomics has the ability to examine the global expression of
small metabolites that are involved in signaling, and
morphological, physio-chemical responses produced during
plant-pathogen interaction. In the past few years, researchers
have put an effort to address the diverse mechanisms that rice
plants use to adapt its metabolism during infection by Xoo and
also discuss how metabolic flux alteration can be used to identify
central regulatory nodes under pathological cell physiology. A
August 2020 | Volume 11 | Article 1152

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Kumar et al. Bacterial Blight Resistance in Rice
resistant rice genotype responds to BB pathogenic invasion by
increasing carotenoids, total phenolic, and flavonoid contents
(Kumar et al., 2013). Boosted levels of flavonoids (cyanidin 3-
galactoside, cyanidin 3-glucoside, delphinidin 3-arabinoside, and
delphinidin 3-galactoside) in black scented rice protects it from
diseases and these compounds are also known to have health
promoting effects on human (Asem et al., 2015).

A high resolution metabolite QTL (mQTL) analysis of rice
recombinant inbred line (RIL) population revealed ~ 2,800
mQTL associated with 900 metabolites (Gong et al., 2013). A
major mQTL for aromatically acylated flavonoids co-located
within a 0.5-Mb region on chromosome 10, which consists of
one acyltransferase gene OsAT1 conferring BB resistance in rice
by regulating lysophosphatidylcholines, has been identified
(Mori et al., 2007; Gong et al., 2013). Leaf samples are
excellent source to study the resistance mechanism in rice.
Hence, evaluation of susceptible versus resistant mutants,
varieties, or genotypes is an ultimate tool to interpret
resistance mechanisms and identify defense related metabolites.
The leaf metabolome was examined to identify the metabolites
that might be responsible for differences between BB susceptible,
wild type cultivar, and resistant transgenic rice plant (http://
www.agilent.com/cs/library/applications/5989-6234EN.pdf).
Studies suggest distinct subsets of metabolites at pre and post-
invasion might coordinate during BB infection. For example, 42
metabolites could be predicted to be associated with BB
resistance, 22 metabolites were connected to infection
response, 25 metabolites could be formed by bacteria or in
response to it, and a total of 170 metabolites were identified,
which differentially expressed between the two-contrast line
(Fisher and Sana, 2007). Recently, seed metabolome of a BB
resistant line, C418/Xa23, which was generated through marker
assisted breeding, and a transgenic variety C418-Xa21 were
compared with the wild type susceptible progenitor (C418)
(Wu et al., 2012). The study revealed distinct metabolite
pattern in the seed of resistant line with significant decline in
few common metabolites: amino acids (alanine, glycine, and
tyrosine), organic acids (ferulic acid, succinic acid, and malic
acid), and glycerol. Additionally, linoleic acid emerged as specific
signature metabolite in the seed of resistant breeding line.
Possibly, these metabolites regulate the Kreb’s cycle and amine
biosynthesis, which drive the metabolic state and cell physiology
(Figure 3B). There is a possibility to use these metabolites as
novel discriminatory metabolites to identify BB resistant
rice genotypes.

System Biology Approach to Understand
Rice-Xoo Interaction For Developing
Strategies For Durable Resistance
Consolidating findings emanating from multiple omics
platforms contributes to an improved understanding of
metabolic pathways, genes, and gene-interaction networks
responsible for the phenotypic changes that accompany plant-
microbes interactions. A growing body of literature that
integrates metabolomics, transcriptomics, and proteomics
analyses suggests that significant metabolic alterations happen
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during plant-pathogen interactions (Wan et al., 2002; Oksman-
Caldentey and Saito, 2005; Hollywood et al., 2006; Figueiredo
et al., 2008; Tan et al., 2009; Choi et al., 2010; Sana et al., 2010;
Paternain and Campion, 2013). However, similar approach for
studying BB resistance in rice is presently lacking. To the best of
our knowledge, only one study is conducted in rice to establish
correlations between the metabolome and transcriptome (Sana
et al., 2010). Examination of the metabolic profile of a resistant
rice variety infected with Xoo suggested significant up-regulation
of compounds such as pigments, rutin, fatty acids, and lipids in
the resistant plant. The study compared the differential
expression of genes in relation to these metabolite products
and the corresponding enzymes, and their regulatory
pathways. For instance, the transcriptomics and metabolomics
data revealed strong correlation between decreased in glutamate
levels with increased expression of glutamate decarboxylase,
which encodes for an enzyme that catalyzes decarboxylation of
glutamate to GABA in the Xoo challenged plants. Similarly, the
increased expression of Phenylalanine ammonia lyase (gene
product regulates phenyl propanoid pathway) was in
coordination with the elevated level of phenylalanine in the
Xoo challenged resistant plant. However, the expression of
isocitrate lyase, b-1,3-glucanase and chitinase showed negative
correlation with the metabolite data in the resistant plant as these
genes are involved in degradation of fungal cell wall and provide
resistance against fungal pathogen (O’Toole et al., 2001). We
anticipate a remarkable increase in the studies that combine
different omics platforms to provide better insights into BB
resistance in rice.
EPIGENETICS: A NEW WAY TO IMPROVE
TRAIT UNDERSTANDING AND
MANIPULATION

To evaluate the epigenetic control responsible for resistance against
Xoo, methylated regions of rice genome were using methylation
sensitive amplified polymorphism (MSAP) technique, and cytosine
methylation was screened by the bisulfite mapping technique
(Akimoto et al., 2007). The rice seed were treated with 5-
azadeoxycytidine (inhibitor of DNA methylation), and the
progeny were grown in field. Among 1000 seeds treated with 5-
azadeoxycytidine, only 35 seedlings survived and, out of that, two
showed dwarf phenotypes. In contrast to susceptible wild type, line-
2 showed constitutive expression of Xa21G and resistance against
BB (Akimoto et al., 2007). Normally, the promoter remained at
hyper-methylated condition, which silences Xa21G gene to cause
susceptibility to Xoo. Besides DNA methylation, epigenetic
regulatory pathways also regulate the initial step of plant-bacteria
interaction through small RNAs (sRNAs), such as small interfering
RNAs (siRNAs) andmicro RNAs (miRNAs) (Carvalho et al., 2016).
In Arabidopsis and legumes, miR393 is induced during pathogenic
infection and confers resistance to associative and endophytic
diazotrophic bacteria (AEDB) by attenuation of auxin signaling
pathways (Navarro et al., 2006; Subramanian et al., 2008). Similarly,
enhanced expression of miR160 in Arabidopsis during bacterial
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infection indicates its possible involvement in defense response
(Fahlgren et al., 2007). In contrast, the down-regulation of miR160
and miR393 in maize caused suppression of defense response
(Thiebaut et al., 2014). Genome editing tools such as ZFNs and
TALEs were used for targeted epigenetic modifications in plants
(Gaj et al., 2013). Presently, the CRISPR/Cas9 technology has
become the widely accepted genome editing tool for plant
modification including epigenetic modification (Malzahn et al.,
2017; Van de Wiel et al., 2017). In mammalian system, targeted
enhanced CpG methylation has been successfully demonstrated by
using CRISPR/Cas9-DNMT3A as epigenetic modifier (Vojta et al.,
2016). In future, such epigenetic modifications are expected to be
routinely deployed for targeted methylation for disease resistance.
IMPACT OF CLIMATE ON BB
RESISTANCE GENES

The classical concept of Plant Pathology describes a plant disease
as the result of interaction of host, pathogen and environment,
commonly referred to as ‘disease triangle’. Thus, variations in
any parameters of environment can remarkably affect the disease
consequence. Several studies have shown that the effectiveness of
‘R’-gene mediated defense response can be substantially
influenced by temperature variation (de Jong et al., 2000; Uauy
et al., 2005; Webb et al., 2010; Zhu et al., 2010; Zhao et al., 2016).
Webb et al. (2010) reported that near isogenic line IRBB4 owning
the BB resistance gene Xa4 exhibited much longer lesion at
higher temperature regime (35:27°C, day:night) than in lower
temperature regimes (29:21°C, day:night). Similarly, Dossa et al.
(2017) observed that drought stress significantly reduced Xa4
mediated BB resistance in rice. On the contrary, efficacy of BB
resistance gene, Xa7 was significantly improved at higher
temperature (35:31°C, day:night) compared to lower
temperature (29:21°C, day:night) in limiting BB severity and
Xoo population (Webb et al., 2010). In a detailed study, Cohen
et al. (2017) found that the level of Xa7-mediated BB resistance
was comparatively stronger and faster at higher temperature as
compared to lower temperature regime. These contrasting
scenarios raise concerns about durability of single R gene and
different gene combinations in the scenario of a rapidly changing
climate. Recently, Dossa et al. (2020) demonstrated that near
isogenic line IRBB 67 (owning BB resistance genes Xa4 and Xa7)
did not show any difference in lesion length at both lower and
higher temperature regimes, indicating that the reduced
effectiveness of Xa4 at higher temperature did not affect the
resistance level of IRBB 67.
PERSPECTIVE AND CONCLUSIONS

The research achievements in the recent past have contributed to
improved understanding of resistance mechanisms in rice
against Xoo infection and also the pathways associated with
susceptibility. Deploying multiple sets of carefully selected R-
genes as gene-pyramids holds promise for developing improved
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rice cultivars/hybrids with durable and broad-spectrum BB
resistance. Identification and utilization of new resistant genes/
alleles, tapping the genetic variability in diverse germplasm, and
generation novel variation in existing genes through gene-editing
will be crucial to achieve sustained production of rice for ever-
increasing population. Mapping and characterization of different
BB R-genes have made marker-assisted selection a valuable tool
to develop durable BB disease resistance in rice. Moreover,
strategies for gene discovery based on genomics and
proteomics together with transgene validation through genetic
transformation are increasingly helping us understand the
functional profiles of candidate genes. Research on this aspect
has been immensely benefited from the increasing information
on structure and function of major BB resistance genes.
Although a smaller number of major R-genes have been cloned
and characterized as of now, RGAs and DNA markers linked to
resistance trait have been routinely deployed in BB resistant
genotypes breeding. The possibility to surveil genomic variations
and the evolution of virulence-avirulence factors have expanded
further with the availability of complete genome sequences of
rice and Xoo. Domestication of rice has indeed narrowed the
genetic diversity particularly with respect to diverse allelic forms
of resistance genes that may exist in wild relatives of Oryza.
Hence, it becomes imperative to conduct large-scale survey of
wild rice species to characterize novel BB resistance genes and
also novel alleles of known resistance genes so that they can be
gainfully used for rice improvements. In our opinion, the need of
the hour is to make best possible use of information and
resources available not only in rice but also in other related
crop species so as to achive durable resistance against BB disease.
For example, investigations on how wheat crop avoids infection
by Xoo or how rice avoids infection by the wheat rust pathogen,
Puccinia gramins fsp. Triticimay offer clues for developing broad
spectrum resistance in rice against multiple pathogens including
Xoo. Interestingly, the focus of the research is now making a
paradigm shift from individual genes to the whole plant systems.
We anticipate that a better-coordinated inter-disciplinary research
may reduce redundancy and competition in specific area along with
dedicating greater attention to previously unexplored research areas.
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