69,334 research outputs found
Recommended from our members
Design of generic modular reconfigurable platforms (GMRPS) for a product-oriented micro manufacturing system
With the proposition of the concept of product-service systems, many manufacturers are focusing on selling services or functionality rather than products. Industrial production is shifting production models from mass production to mass customization and highly personalized needs. As a result, there is a tendency for manufacturing system suppliers to develop product-oriented systems to responsively cope with the dynamic fast moving competitive market. The key features of such a manufacturing system are the reconfigurability and adaptability, which can enable the system respond to the changeable needs of customers quickly and adaptively. Therefore, one of the challenges for the micro manufacturing system provider has been the design of a reconfigurable machine platform which will provide the functionalities and flexibility required by the product-oriented systems.
In this paper, a new micro manufacturing platform, i.e. a generic modular reconfigurable platform (GMRP) is proposed in order to provide an effective means for fabrication of high quality micro products at low cost in a responsive manner. The GMRP-based system aims to be a product-oriented reconfigurable, highly responsive manufacturing system particularly for high value nano/micro manufacturing purposes. To reuse components and decrease material consumption, GMRP is characterized by hybrid micro manufacturing processes, modularity of key components, and reconfigurability of machine platforms and key components. Furthermore, a practical methodology for the design of reconfigurable machine platforms is discussed against the requirements from product-driven micro manufacturing and its extension for adaptive production
Elliptic blowup equations for 6d SCFTs. Part II: Exceptional cases
The building blocks of 6d SCFTs include certain rank one theories with gauge group . In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d superconformal theories. We also observe an intriguing relation between the -string elliptic genus and the Schur indices of rank SCFTs, as a generalization of Lockhart-Zotto's conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters
Assessment of the NPP VIIRS RVS for the Thermal Emissive Bands Using the First Pitch Maneuver Observations
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on Suomi NPP (National Polar-orbiting Partnership) satellite (http://npp.gsfc.nasa.gov/viirs.html) (launched in October 2011). VIIRS sensor design draws on heritage instruments including AVHRR, OLS, SeaWiFS and MODIS. It has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle (SD for RSB and blackbody for TEB). Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first three months of intensive Cal/Val. The NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of scan angles, which can be used to characterize the TEB RVS. This study will provide our analysis of the pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab tests will be conducted for each band, detector, and half angle mirror (HAM) sid
Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco
Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research
Pitfalls in the analysis of low-temperature thermal conductivity of high-Tc cuprates
Recently, it was proposed that phonons are specularly reflected below about
0.5 K in ordinary single-crystal samples of high-T_c cuprates, and that the
low-temperature thermal conductivity should be analyzed by fitting the data up
to 0.5 K using an arbitrary power law. Such an analysis yields a result
different from that obtained from the conventional analysis, in which the
fitting is usually restricted to a region below 0.15 K. Here we show that the
proposed new analysis is most likely flawed, because the specular phonon
reflection means that the phonon mean free path \ell gets LONGER than the mean
sample width, while the estimated \ell is actually much SHORTER than the mean
sample width above 0.15 K.Comment: 4 pages, 1 figure; manuscript for the Proceedings of LEHTSC2007 to be
published in Journal of Physics: Conference Serie
Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region
Recent experiments have confirmed the existence of rotational bands in the A
\~ 110 mass region with very extended shapes lying between super- and
hyper-deformation. Using the projected shell model, we make a first attempt to
describe quantitatively such a band structure in 108Cd. Excellent agreement is
achieved in the dynamic moment of inertia J(2) calculation. This allows us to
suggest the spin values for the energy levels, which are experimentally
unknown. It is found that at this large deformation, the sharply down-sloping
orbitals in the proton i_{13/2} subshell are responsible for the irregularity
in the experimental J(2), and the wave functions of the observed states have a
dominant component of two-quasiparticles from these orbitals. Measurement of
transition quadrupole moments and g-factors will test these findings, and thus
can provide a deeper understanding of the band structure at very extended
shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a
Rapid Communicatio
Recommended from our members
Studies on Temperature and Strain Sensitivities of a Few-mode Critical Wavelength Fiber Optic Sensor
This paper studied the relationship between the temperature/strain wavelength sensitivity of a fiber optic in-line Mach-Zehnder Interferometer (MZI) sensor and the wavelength separation of the measured wavelength to the critical wavelength (CWL) in a CWL-existed interference spectrum formed by interference between LP01 and LP02 modes. The in-line MZI fiber optic sensor has been constructed by splicing a section of specially designed few-mode fiber (FMF), which support LP01 and LP02 modes propagating in the fiber, between two pieces of single mode fiber. The propagation constant difference, Δβ, between the LP01 and LP02 modes, changes non-monotonously with wavelength and reaches a maximum at the CWL. As a result, in sensor operation, peaks on the different sides of the CWL then shift in opposite directions, and the associated temperature/strain sensitivities increase significantly when the measured wavelength points become close to the CWL, from both sides of the CWL. A theoretical analysis carried out has predicted that with this specified FMF sensor approach, the temperature/strain wavelength sensitivities are governed by the wavelength difference between the measured wavelength and the CWL. This conclusion was seen to agree well with the experimental results obtained. Combining the wavelength shifts of the peaks and the CWL in the transmission spectrum of the SFS structure, this study has shown that this approach forms the basis of effective designs of high sensitivity sensors for multi-parameter detection and offering a large measurement range to satisfy the requirements needed for better industrial measurements
Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells.
DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ~25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation
Recommended from our members
Flow measurement inside a zinc-nickel flow cell battery using FBG based sensor system
Downloading of the abstract is permitted for personal use only. A detailed knowledge of the internal flow distribution inside a zinc-nickel flow battery is of critical importance to ensure smooth flow of the electrolyte through the battery cell and better operation of the device. Information of this type can be used as a useful means of early detection of zinc deposition and dendrite formation inside the cell, negative factors which affect the flow and thus which can lead to internal short circuiting, this being a primary failure mode of these types of batteries. This deposition occurs at low pH levels when zinc reacts with the electrolyte to form solid zinc oxide hydroxides. Traditionally, manual inspection is conducted, but this is time consuming and costly, only providing what are often inaccurate results-overall it is an impractical solution especially with the wider use of batteries in the very near future. Fibre Bragg grating (FBG) sensors integrated inside the flow cell offer the advantage of measuring flow changes at multiple locations using a single fibre and that then can be used as an indicator of the correlation between the internal flow distribution and the deposition characteristics. This work presents an initial study, where two networks of FBGs have been installed and used for flow change detection in an active zinc-nickel flow battery. Data have been obtained from the sensor networks and information of battery performance completed and summarized in this paper. The approach shows promising results and thus scope for the future research into the development of this type of sensor system
- âŠ