1,337 research outputs found

    Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of π\pi Phase Shifts in Corner Junctions

    Full text link
    We study the order parameter symmetry in bi-layer cuprates such as YBaCuO, where interesting π\pi phase shifts have been observed in Josephson junctions. Taking models which represent the measured spin fluctuation spectra of this cuprate, as well as more general models of Coulomb correlation effects, we classify the allowed symmetries and determine their associated physical properties. π\pi phase shifts are shown to be a general consequence of repulsive interactions, independent of whether a magnetic mechanism is operative. While it is known to occur in d-states, this behavior can also be associated with (orthorhombic) s-symmetry when the two sub-band gaps have opposite phase. Implications for the magnitude of TcT_c are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request

    Boiling regimes of impacting drops on a heated substrate under reduced pressure

    Get PDF
    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P = 0.13 bar to atmospheric pressure. We employ Frustrated Total Internal Reflection (FTIR) imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling) or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependency on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism, and are dominated by the dynamics taken place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e. the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P = 0.13 and P = 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.Comment: 13 pages, 6 figures, submitted to PR

    A Coupled Equations Model for Epitaxial Growth on Textured Surfaces

    Full text link
    We have developed a continuum model that explains the complex surface shapes observed in epitaxial regrowth on micron scale gratings. This model describes the dependence of the surface morphology on film thickness and growth temperature in terms of a few simple atomic scale processes including adatom diffusion, step-edge attachment and detachment, and a net downhill migration of surface adatoms. The continuum model reduces to the linear part of the Kardar-Parisi-Zhang equation with a flux dependent smoothing coefficient in the long wavelength limit.Comment: 11 pages, 4 figures. Submitted to the Journal of Crystal Growt

    Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector

    Full text link
    According to quantum measurement theory, "speed meters" -- devices that measure the momentum, or speed, of free test masses -- are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by P. Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sagnac, as for other speed meters. With squeezed vacuum (squeeze factor e2R=0.1e^{-2R} = 0.1) injected into its dark port, the recycled Sagnac can beat the SQL by a factor 103 \sqrt{10} \simeq 3 over the frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same circulating power Ic820I_c\sim 820 kW as is used by the (quantum limited) second-generation Advanced LIGO interferometers -- if other noise sources are made sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO).Comment: 12 pages, 6 figure

    Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection

    Get PDF
    We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications

    Theory of nonlinear optical properties of phenyl-substituted polyacetylenes

    Full text link
    In this paper we present a theoretical study of the third-order nonlinear optical properties of poly(diphenyl)polyacetylene (PDPA) pertaining to the third-harmonic-generation (THG) process. We study the aforesaid process in PDPA's using both the independent electron Hueckel model, as well as correlated-electron Pariser-Parr-Pople (P-P-P) model. The P-P-P model based calculations were performed using various configuration interaction (CI) methods such as the the multi-reference-singles-doubles CI (MRSDCI), and the quadruples-CI (QCI) methods, and the both longitudinal and the transverse components of third-order susceptibilities were computed. The Hueckel model calculations were performed on oligo-PDPA's containing up to fifty repeat units, while correlated calculations were performed for oligomers containing up to ten unit cells. At all levels of theory, the material exhibits highly anisotropic nonlinear optical response, in keeping with its structural anisotropy. We argue that the aforesaid anisotropy can be divided over two natural energy scales: (a) the low-energy response is predominantly longitudinal and is qualitatively similar to that of polyenes, while (b) the high-energy response is mainly transverse, and is qualitatively similar to that of trans-stilbene.Comment: 13 pages, 7 figures (included), to appear in Physical Review B (April 15, 2004

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    QND measurements for future gravitational-wave detectors

    Full text link
    Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit, a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the Standard Quantum Limit significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information on quantum noise in GW interferometer and several new items into Reference list were adde
    corecore