55 research outputs found
Peptide Self-Assembled Nanostructures for Drug Delivery Applications
Peptide self-assembled nanostructures are very popular in many biomedical applications. Drug delivery is one of the most promising applications among them. The tremendous advantages for peptide self-assembled nanostructures include good biocompatibility, low cost, tunable bioactivity, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery at disease sites. Peptide self-assembled nanostructures such as nanoparticles, nanotubes, nanofibers, and hydrogels have been investigated by many researchers for drug delivery applications. In this review, the underlying mechanisms for the self-assembled nanostructures based on peptides with different types and structures are introduced and discussed. Peptide self-assembled nanostructures associated promising drug delivery applications such as anticancer drug and gene drug delivery are highlighted. Furthermore, peptide self-assembled nanostructures for targeted and stimuli responsive drug delivery applications are also reviewed and discussed
Construction and Characterization of an Infectious Murine Gammaherpesivrus-68 Bacterial Artificial Chromosome
Here we describe the cloning of a sequenced WUMS isolate of murine gammaherpesvirus-68 (MHV-68, γHV-68, also known as MuHV-4) as a bacterial artificial chromosome (BAC). We engineered the insertion of the BAC sequence flanked by loxP sites into the left end of the viral genome before the M1 open reading frame. The infectious viruses were reconstituted following transfection of the MHV-68 BAC DNA into cells. The MHV-68 BAC-derived virus replicated indistinguishably from the wild-type virus in cultured cells. Excision of the BAC insert was efficiently achieved by coexpressing the Cre recombinase. Although the BAC insertion did not significantly affect acute productive infection in the lung, it severely compromised the ability of MHV-68 to establish splenic latency. Removal of the BAC sequence restored the wild-type level of latency. Site-specific mutagenesis was carried out by RecA-mediated recombination to demonstrate that this infectious BAC clone can be used for genetic studies of MHV-68
A Novel Non-Volatile Inverter-based CiM: Continuous Sign Weight Transition and Low Power on-Chip Training
In this work, we report a novel design, one-transistor-one-inverter (1T1I),
to satisfy high speed and low power on-chip training requirements. By
leveraging doped HfO2 with ferroelectricity, a non-volatile inverter is
successfully demonstrated, enabling desired continuous weight transition
between negative and positive via the programmable threshold voltage (VTH) of
ferroelectric field-effect transistors (FeFETs). Compared with commonly used
designs with the similar function, 1T1I uniquely achieves pure on-chip-based
weight transition at an optimized working current without relying on assistance
from off-chip calculation units for signed-weight comparison, facilitating
high-speed training at low power consumption. Further improvements in linearity
and training speed can be obtained via a two-transistor-one-inverter (2T1I)
design. Overall, focusing on energy and time efficiencies, this work provides a
valuable design strategy for future FeFET-based computing-in-memory (CiM)
A New Chinese Medicine Intestine Formula Greatly Improves the Effect of Aminosalicylate on Ulcerative Colitis
Ulcerative colitis (UC) is a chronic lifelong inflammatory disorder of the colon. Current medical treatment of UC relies predominantly on the use of traditional drugs, including aminosalicylates, corticosteroids, and immunosuppressants, which failed to effectively control this disease’s progression and produced various side effects. Here, we report a new Chinese medicine intestine formula (CIF) which greatly improved the effect of mesalazine, an aminosalicylate, on UC. In the present study, 60 patients with chronic UC were treated with oral mesalazine alone or in combination with CIF enema. The combination of mesalazine and CIF greatly and significantly improved the clinical symptoms and colon mucosal condition and improved the Mayo Clinic Disease Activity Index and health-related quality of life, when compared to mesalazine alone. In particular, the addition of CIF further decreased serum levels of tumor necrosis factor-alpha and hypersensitivity C-reactive protein but in contrast increased interleukin-4. Thus, the results demonstrate the beneficial role of CIF in UC treatment, which may be mediated by the regulation of inflammation
Quantum confined peptide assemblies with tunable visible to near-infrared spectral range
Quantum confined materials have been extensively studied for photoluminescent applications. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio-imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for these nanostructures, and their utilization for in vivo imaging and as phosphors for light-emitting diodes is demonstrated. The data reveal that the morphologies and optical properties of the aromatic cyclo-dipeptide self-assemblies can be tuned, making them potential candidates for supramolecular quantum confined materials providing biocompatible alternatives for broad biomedical and opto-electric applications
The Reproducibility of Lists of Differentially Expressed Genes in Microarray Studies
Reproducibility is a fundamental requirement in scientific experiments and clinical contexts. Recent publications raise concerns about the reliability of microarray technology because of the apparent lack of agreement between lists of differentially expressed genes (DEGs). In this study we demonstrate that (1) such discordance may stem from ranking and selecting DEGs solely by statistical significance (P) derived from widely used simple t-tests; (2) when fold change (FC) is used as the ranking criterion, the lists become much more reproducible, especially when fewer genes are selected; and (3) the instability of short DEG lists based on P cutoffs is an expected mathematical consequence of the high variability of the t-values. We recommend the use of FC ranking plus a non-stringent P cutoff as a baseline practice in order to generate more reproducible DEG lists. The FC criterion enhances reproducibility while the P criterion balances sensitivity and specificity
The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35
The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets
Gene Expression Profiles Distinguish the Carcinogenic Effects of Aristolochic Acid in Target (Kidney) and Non-target (Liver) Tissues in Rats
BACKGROUND: Aristolochic acid (AA) is the active component of herbal drugs derived from Aristolochia species that have been used for medicinal purposes since antiquity. AA, however, induced nephropathy and urothelial cancer in people and malignant tumors in the kidney and urinary tract of rodents. Although AA is bioactivated in both kidney and liver, it only induces tumors in kidney. To evaluate whether microarray analysis can be used for distinguishing the tissue-specific carcinogenicity of AA, we examined gene expression profiles in kidney and liver of rats treated with carcinogenic doses of AA. RESULTS: Microarray analysis was performed using the Rat Genome Survey Microarray and data analysis was carried out within ArrayTrack software. Principal components analysis and hierarchical cluster analysis of the expression profiles showed that samples were grouped together according to the tissues and treatments. The gene expression profiles were significantly altered by AA treatment in both kidney and liver (p < 0.01; fold change > 1.5). Functional analysis with Ingenuity Pathways Analysis showed that there were many more significantly altered genes involved in cancer-related pathways in kidney than in liver. Also, analysis with Gene Ontology for Functional Analysis (GOFFA) software indicated that the biological processes related to defense response, apoptosis and immune response were significantly altered by AA exposure in kidney, but not in liver. CONCLUSION: Our results suggest that microarray analysis is a useful tool for detecting AA exposure; that analysis of the gene expression profiles can define the differential responses to toxicity and carcinogenicity of AA from kidney and liver; and that significant alteration of genes associated with defense response, apoptosis and immune response in kidney, but not in liver, may be responsible for the tissue-specific toxicity and carcinogenicity of AA
- …