3,408 research outputs found

    Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    Get PDF
    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website

    Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipids extracted from seeds of <it>Camelina sativa </it>have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of <it>Camelina sativa </it>allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In <it>Arabidopsis</it>, overexpression of purple acid phosphatase 2 encoded by <it>Arabidopsis </it>(<it>AtPAP2</it>) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in <it>Camelina sativa</it>.</p> <p>Results</p> <p>Under controlled environmental conditions, overexpression of AtPAP2 in <it>Camelina sativa </it>resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic <it>Arabidopsis</it>, activity of sucrose phosphate synthase in leaves of transgenic <it>Camelina </it>was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants.</p> <p>Conclusions</p> <p>Lipids extracted from the seeds of <it>Camelina sativa </it>have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic <it>Camelina </it>under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make <it>Camelina</it>-based biofuels more environmentally friendly and economically attractive.</p

    Future perspectives for alkali-activated materials: from existing standards to structural applications

    Get PDF
    The production of cement and concrete contributes significantly to global greenhouse gas emissions. Alkali-activated concretes (AACs) are a family of existing alternative construction materials that could reduce the current environmental impact of Portland cement (PC) production and utilisation. Successful applications of AACs can be found in Europe and the former USSR since the 1950s and more recently in Australia, China and North America, proving their potential as construction materials. However, their utilisation is limited presently by the lack of normative and construction guidelines. Raw materials’ non-uniform global availability and variable intrinsic properties, coupled with the lack of specific testing methods, raise questions regarding reproducibility and reliability. The mechanical and chemical behaviour of AACs has been investigated extensively over the past decades, strengthening its potential as a sustainable substitute for traditional PC-based concrete. Although a wide amount of studies demonstrated that AACs could meet and even exceed the performance requirements provided by European design standards, a classification of these broad spectra of materials, as well as new analytical models linking the chemistry of the system components to the mechanical behaviour of the material, still need further development. This report gives an overview of the potential of alkali-activated systems technology, focusing on the limitations and challenges still hindering their standardisation and wider application in the construction field

    Protocols for Assessing Transformation Rates of Nitrous Oxide in the Water Column

    Get PDF
    Nitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories

    Two-stage study designs combining genome-wide association studies, tag single-nucleotide polymorphisms, and exome sequencing: accuracy of genetic effect estimates

    Get PDF
    Genome-wide association studies (GWAS) test for disease-trait associations and estimate effect sizes at tag single-nucleotide polymorphisms (SNPs), which imperfectly capture variation at causal SNPs. Sequencing studies can examine potential causal SNPs directly; however, sequencing the whole genome or exome can be prohibitively expensive. Costs can be limited by using a GWAS to detect the associated region(s) at tag SNPs followed by targeted sequencing to identify and estimate the effect size of the causal variant. Genetic effect estimates obtained from association studies can be inflated because of a form of selection bias known as the winner’s curse. Conversely, estimates at tag SNPs can be attenuated compared to the causal SNP because of incomplete linkage disequilibrium. These two effects oppose each other. Analysis of rare SNPs further complicates our understanding of the winner’s curse because rare SNPs are difficult to tag and analysis can involve collapsing over multiple rare variants. In two-stage analysis of Genetic Analysis Workshop 17 simulated data sets, we find that selection at the tag SNP produces upward bias in the estimate of effect at the causal SNP, even when the tag and causal SNPs are not well correlated. The bias similarly carries through to effect estimates for rare variant summary measures. Replication studies designed with sample sizes computed using biased estimates will be under-powered to detect a disease-causing variant. Accounting for bias in the original study is critical to avoid discarding disease-associated SNPs at follow up

    A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor

    Get PDF
    Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis

    Elucidation of the Hsp90 C-terminal Inhibitor Binding Site

    Get PDF
    The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein
    corecore