26 research outputs found
The life cycle of Dermacentor nuttalli from the Qinghai-Tibetan Plateau under laboratory conditions and detection of spotted fever group Rickettsia spp.
Dermacentor nuttalli has been a focus of study because tick-borne pathogens have been widely identified in this tick from northern and southwestern China. The aim of this study was to characterize the life cycle of D. nuttalli under laboratory conditions and to detect spotted fever group (SFG) Rickettsia in the midgut and salivary glands of both field-collected and first laboratory generation adults. D. nuttalli ticks were collected in the field on the Qinghai-Tibetan Plateau from March to April 2021 and their life cycle was studied under laboratory conditions. Tick identify was molecularly confirmed, and SFG Rickettsia were detected in the midgut and salivary glands of males and females by PCR targeting different rickettsial genes. The results showed that the life cycle of D. nuttalli under laboratory conditions was completed in an average of 86.1 days. High positivity of Rickettsia spp. was detected in the midgut and salivary glands of both males (92.0%) and females (93.0%) of field-collected D. nuttalli ticks. However, a relatively lower positivity (4.0–6.0%) was detected in first laboratory generation adults. Furthermore, sequencing analysis showed that the Rickettsia sequences obtained in this study shared 98.6 to 100% nucleotide identity with Rickettsia slovaca and Rickettsia raoultii isolated from Dermacentor spp. in China. Phylogenetic analysis of Rickettsia spp. based on the gltA, ompA, ompB and sca4 genes revealed that the Rickettsia sequences obtained could be classified as belonging to R. slovaca and R. raoultii clades. This study described for the first time the life cycle of D. nuttalli from the Qinghai-Tibetan Plateau under laboratory conditions. Two species of SFG Rickettsia were detected in the midgut and salivary glands of males and females in both field-collected and first laboratory-generation adults of D. nuttalli. Our study provides new insights into pathogen detection in ticks in the Qinghai-Tibet Plateau, and the relationships among hosts, ticks, and pathogens
Pickering emulsion-enhanced interfacial biocatalysis: tailored alginate microparticles act as particulate emulsifier and enzyme carrier
A robust Pickering emulsion stabilized by lipase-immobilized alginate gel microparticles with a coating of silanized titania nanoparticles is developed for biphasic biocatalysis. The good recyclability and high stability of the proposed interfacial catalysis system have been verified, retaining about 90% of relative enzyme activity in 10 catalytic cycles with operation for 240 h. Meanwhile the Pickering emulsions remain stable during a storage time of one year. The green system can be widely applied to construct powerful platforms for enzyme or microorganism-driven interfacial catalysis
Specific aromatic foldamers potently inhibit spontaneous and seeded Aβ42 and Aβ43 fibril assembly
Amyloid fibrils are self-propagating entities that spread pathology in several devastating disorders including Alzheimer's disease (AD). In AD, amyloid-β (Aβ) peptides form extracellular plaques that contribute to cognitive decline. One potential therapeutic strategy is to develop inhibitors that prevent Aβ misfolding into proteotoxic conformers. Here, we design specific aromatic foldamers, synthetic polymers with an aromatic salicylamide (Sal) or 3-amino benzoic acid (Benz) backbone, short length (four repetitive units), basic arginine (Arg), lysine (Lys) or citrulline (Cit) side chains, and various N- and C-terminal groups that prevent spontaneous and seeded Aβ fibrillization. Ac-Sal-(Lys-Sal)(3)-CONH(2) and Sal-(Lys-Sal)(3)-CONH(2) selectively inhibited Aβ42 fibrillization, but were ineffective against Aβ43, an overlooked species that is highly neurotoxic and frequently deposited in AD brains. By contrast, (Arg-Benz)(4)-CONH(2) and (Arg-Sal)(3)-(Cit-Sal)-CONH(2) prevented spontaneous and seeded Aβ42 and Aβ43 fibrillization. Importantly, (Arg-Sal)(3)-(Cit-Sal)-CONH(2) inhibited formation of toxic Aβ42 and Aβ43 oligomers and proteotoxicity. None of these foldamers inhibited Sup35 prionogenesis, but Sal-(Lys-Sal)(3)-CONH(2) delayed aggregation of fused in sarcoma (FUS), an RNA-binding protein with a prion-like domain connected with amyotrophic lateral sclerosis and frontotemporal dementia. We establish that inhibitors of Aβ42 fibrillization do not necessarily inhibit Aβ43 fibrillization. Moreover, (Arg-Sal)(3)-(Cit-Sal)-CONH(2) inhibits formation of toxic Aβ conformers and seeding activity, properties that could have therapeutic utility
Efficacy and Adverse Events Associated With Use of OnabotulinumtoxinA for Treatment of Neurogenic Detrusor Overactivity: A Meta-Analysis
Purpose OnabotulinumtoxinA is used widely for the treatment of neurogenic detrusor overactivity. We conducted a systematic review and meta-analysis to assess its efficacy and safety for neurogenic detrusor overactivity treatment. Methods A systematic literature review was performed to identify all published randomized double-blind, placebo-controlled trials of onabotulinumtoxinA for neurogenic detrusor overactivity treatment. MEDLINE, Embase, and the CENTRAL were employed. Reference lists of retrieved studies were reviewed carefully. Results Six publications involving 871 patients, which compared onabotulinumtoxinA with a placebo were analyzed. Efficacy of onabotulinumtoxinA treatment was shown as a reduction of the mean number of urinary incontinence episodes per day (mean difference, -1.41; 95% confidence interval [CI], -1.70 to -1.12; P<0.00001), maximum cystometric capacity (135.48; 95% CI, 118.22–152.75; P<0.00001), and maximum detrusor pressure (-32.98; 95% CI, -37.33 to -28.62; P<0.00001). Assessment of adverse events revealed that complications due to onabotulinumtoxinA injection were localized primarily to the urinary tract. Conclusions This meta-analysis suggests that onabotulinumtoxinA is an effective treatment for neurogenic detrusor overactivity with localized advent events
Serological Analysis of IgG and IgM Antibodies against Anaplasma spp. in Various Animal Species of the Qinghai-Tibetan Plateau
Anaplasma genus infects the blood cells of humans and animals by biting, causing zoonotic anaplasmosis. However, limited data are available on carrier animals for Anaplasma spp. antibodies in the Qinghai–Tibetan Plateau Area. Therefore, a serological indirect ELISA diagnostic method based on the major surface protein 5 (MSP5), derived from Anaplasma phagocytophilum, was developed in this study to analyze both IgG and IgM antibodies of Anaplasma spp. in a total of 3952 animals from the Qinghai–Tibetan Plateau, including yaks (Bos grunniens), cows (Bos taurus), cattle (Bos taurus domesticus), Tibetan sheep (Ovis aries), horses (Equus ferus caballus), pigs (Sus domesticus), chickens (Gallus gallus domesticus), donkeys (Equus asinus), stray dogs (Canis sp.), and stray cats (Felis sp.). The results showed that recombinant MSP5 protein was expressed and was successfully used to establish the indirect ELISA methods. The overall positivity for Anaplasma IgG and IgM antibodies was 14.6% (578/3952) and 7.9% (312/3952), respectively, and a total of 123 animals (3.1%) were both IgG- and IgM-positive. Moreover, the most prevalent Anaplasma IgG positivity was exhibited by donkeys (82.5%), followed by stray dogs, Tibetan sheep, pigs, chickens, horses, yaks, cows, cattle, and stray cats. The analysis for IgM antibody positivity revealed that IgM positivity was the most prevalent in the stray dogs (30.1%), followed by horses, yaks, Tibetan sheep, cows, stray cats, and cattle. Moreover, the results revealed significant differences (p < 0.05) at different altitudes in Anaplasma-specific IgG in the yaks, Tibetan sheep, and horses, and in IgM in the yaks and Tibetan sheep. In conclusion, this study is the first to demonstrate that yaks, cows, cattle, Tibetan sheep, horses, donkeys, stray dogs, stray cats, pigs, and chickens living in the Qinghai–Tibet Plateau are carrier animals for Anaplasma spp. IgG or IgM antibodies. The current findings provide valuable current data on the seroepidemiology of anaplasmosis in China and for plateau areas of the world
Image_4_Application of Toxoplasma gondii-specific SAG1, GRA7 and BAG1 proteins in serodiagnosis of animal toxoplasmosis.tif
Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.</p
Image_1_Application of Toxoplasma gondii-specific SAG1, GRA7 and BAG1 proteins in serodiagnosis of animal toxoplasmosis.tif
Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.</p
Table_1_Application of Toxoplasma gondii-specific SAG1, GRA7 and BAG1 proteins in serodiagnosis of animal toxoplasmosis.docx
Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.</p
Table_4_Application of Toxoplasma gondii-specific SAG1, GRA7 and BAG1 proteins in serodiagnosis of animal toxoplasmosis.docx
Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoan parasite T. gondii which is widely prevalent in humans and animals worldwide. The diagnosis of toxoplasmosis and distinguishing acute or chronic T. gondii infections have utmost importance for humans and animals. The TgSAG1, TgGRA7, and TgBAG1 proteins were used in the present study to develop the serological rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA methods for the testing of T. gondii specific IgG and IgM antibodies and differentiating acute or chronic toxoplasmosis in 3733 animals, including Tibetan sheep, yaks, pigs, cows, cattle, horses, chickens, camels and donkeys from the Qinghai-Tibetan Plateau. The ELISA tests showed that the overall positivity of IgG antibody was 21.1% (786/3733), 15.3% (570/3733) and 18.2% (680/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively, and the positivity of IgM antibody was 11.8% (439/3733), 13.0% (486/3733) and 11.8% (442/3733) for rSAG1-, rGRA7- and rBAG1-ELISA, respectively. A total of 241 animals (6.5%) positive for all rSAG1-, rGRA7- and rBAG1-IgG were found in this study, and the 141 animals (3.8%) tested were anti-T. gondii IgM positive in all three ELISAs. Moreover, the 338, 284 and 377 animals were IgG positive in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1- ELISAs respectively, and the 346, 178 and 166 animals in rSAG1 + rGRA7-, rBAG1 + rGRA7- and rSAG1 + rBAG1-ELISAs were IgM positive respectively. The results confirmed that the application of SAG1, GRA7, and BAG1 recombinant antigens could successfully be used in the detection of specific IgG and IgM antibodies for distinguishing between acute or chronic T. gondii infections. It is inferred that the forms in which current animal species in the plateau area were infected with T. gondii, and the period of infection or the clinical manifestations of the current infections may be different. The present study provides substantial clinical evidence for the differential diagnosis of toxoplasmosis, and the classification of acute and chronic T. gondii infections.</p