6 research outputs found

    Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation

    Get PDF
    上皮バリアを形成するペプチドJIPの発見 --JIPは上皮組織修復に貢献する--. 京都大学プレスリリース. 2021-11-18.Epithelial barriers that prevent dehydration and pathogen invasion are established by tight junctions (TJs), and their disruption leads to various inflammatory diseases and tissue destruction. However, a therapeutic strategy to overcome TJ disruption in diseases has not been established because of the lack of clinically applicable TJ-inducing molecules. Here, we found TJ-inducing peptides (JIPs) in mice and humans that corresponded to 35 to 42 residue peptides of the C terminus of alpha 1-antitrypsin (A1AT), an acute-phase anti-inflammatory protein. JIPs were inserted into the plasma membrane of epithelial cells, which promoted TJ formation by directly activating the heterotrimeric G protein G13. In a mouse intestinal epithelial injury model established by dextran sodium sulfate, mouse or human JIP administration restored TJ integrity and strongly prevented colitis. Our study has revealed TJ-inducing anti-inflammatory physiological peptides that play a critical role in tissue repair and proposes a previously unidentified therapeutic strategy for TJ-disrupted diseases

    Strain-Relief Patterns and Kagome Lattice in Self-Assembled C<sub>60</sub> Thin Films Grown on Cd(0001)

    No full text
    We report an ultra-high vacuum low-temperature scanning tunneling microscopy (STM) study of the C60 monolayer grown on Cd(0001). Individual C60 molecules adsorbed on Cd(0001) may exhibit a bright or dim contrast in STM images. When deposited at low temperatures close to 100 K, C60 thin films present a curved structure to release strain due to dominant molecule–substrate interactions. Moreover, edge dislocation appears when two different wavy structures encounter each other, which has seldomly been observed in molecular self-assembly. When growth temperature rose, we found two forms of symmetric kagome lattice superstructures, 2 × 2 and 4 × 4, at room temperature (RT) and 310 K, respectively. The results provide new insight into the growth behavior of C60 films

    Orientation Ordering and Chiral Superstructures in Fullerene Monolayer on Cd (0001)

    No full text
    The structure of C60 thin films grown on Cd (0001) surface has been investigated from submonolayer to second monolayer regimes with a low-temperature scanning tunneling microscopy (STM). There are different C60 domains with various misorientation angles relative to the lattice directions of Cd (0001). In the (2&radic;3 &times; 2&radic;3) R30&deg; domain, orientational disorder of the individual C60 molecules with either pentagon, hexagon, or 6:6 bond facing up has been observed. However, orientation ordering appeared in the R26&deg; domain such that all the C60 molecules adopt the same orientation with the 6:6 bond facing up. In particular, complex chiral motifs composed of seven C60 molecules with clockwise or anticlockwise handedness have been observed in the R4&deg; and R8&deg; domains, respectively. Scanning tunneling spectroscopy (STS) measurements reveal a reduced HOMO&ndash;LOMO gap of 2.1 eV for the C60 molecules adsorbed on Cd (0001) due to the substrate screening and charge transfer from Cd to C60 molecules
    corecore