18 research outputs found

    The Genera and Species of Comatulidae (Comatulida: Crinoidea): Taxonomic Revisions and a Molecular and Morphological Guide

    Get PDF
    We provide a guide for identification of Comatulidae, a family of crinoid echinoderms, incorporating morphological and molecular evidence. A non-dichotomous key for all genera is included, as well as photographs of species most likely to be encountered in the tropical western Pacific Ocean. Based on sequencing of cytochrome oxidase subunit I (COI), and other genes when necessary, we identified four cases where taxonomic revision was needed. We synonymized Comaster nobilis under Comaster schlegelii, and Clarkcomanthus exilis under Clarkcomanthus comanthipinnus, and re-described Clarkcomanthus albinotus. We also showed the variation of COI sequences within and among species, which varies from lineage to lineage. In some cases, specimens with obvious morphological disparity possessed very little intraspecific molecular diversity (\u3c1%). In others, specimens with nearly identical external appearances exhibited quite divergent COI sequences (up to 6%). These results, combined with the non-dichotomous key herein, offer guidelines for identification and discussion of existing and new species of Comatulidae

    EcoEvo-MAPS: An Ecology and Evolution Assessment for Introductory through Advanced Undergraduates

    Get PDF
    A new assessment tool, Ecology and Evolution–Measuring Achievement and Progression in Science or EcoEvo-MAPS, measures student thinking in ecology and evolution during an undergraduate course of study. EcoEvo-MAPS targets foundational concepts in ecology and evolution and uses a novel approach that asks students to evaluate a series of predictions, conclusions, or interpretations as likely or unlikely to be true given a specific scenario. We collected evidence of validity and reliability for EcoEvo-MAPS through an iterative process of faculty review, student interviews, and analyses of assessment data from more than 3000 students at 34 associate’s-, bachelor’s-, master’s-, and doctoral-granting institutions. The 63 likely/unlikely statements range in difficulty and target student understanding of key concepts aligned with the Vision and Change report. This assessment provides departments with a tool to measure student thinking at different time points in the curriculum and provides data that can be used to inform curricular and instructional modifications

    Resources for Teaching and Assessing the Vision and Change Biology Core Concepts

    Get PDF
    The Vision and Change report called for the biology community to mobilize around teaching the core concepts of biology. This essay describes a collection of resources developed by several different groups that can be used to respond to the report’s call to transform undergraduate education at both the individual course and departmental levels. First, we present two frameworks that help articulate the Vision and Change core concepts, the BioCore Guide and the Conceptual Elements (CE) Framework, which can be used in mapping the core concepts onto existing curricula and designing new curricula that teach the biology core concepts. Second, we describe how the BioCore Guide and the CE Framework can be used alongside the Partnership for Undergraduate Life Sciences Education curricular rubric as a way for departments to self-assess their teaching of the core concepts. Finally, we highlight three sets of instruments that can be used to directly assess student learning of the core concepts: the Biology Card Sorting Task, the Biology Core Concept Instruments, and the Biology—Measuring Achievement and Progression in Science instruments. Approaches to using these resources independently and synergistically are discussed

    Association of rhizobia with a marine polychaete.

    No full text

    Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): A New Classification and an Assessment of Morphological Characters for Crinoid Taxonomy

    No full text
    Comatulidae Fleming, 1828 (previously, and incorrectly, Comasteridae A.H. Clark, 1908a), is a group of feather star crinoids currently divided into four accepted subfamilies, 21 genera and approximately 95 nominal species. Comatulidae is the most commonly-encountered and species-rich crinoid group on shallow tropical coral reefs, particularly in the Indo-western Pacific region (IWP). We conducted a molecular phylogenetic analysis of the group with concatenated data from up to seven genes for 43 nominal species spanning 17 genera and all subfamilies. Basal nodes returned low support, but maximum likelihood, maximum parsimony, and Bayesian analyses were largely congruent, permitting an evaluation of current taxonomy and analysis of morphological character transformations. Two of the four current subfamilies were paraphyletic, whereas 15 of the 17 included genera returned as monophyletic. We provide a new classification with two subfamilies, Comatulinae and Comatellinae n. subfamily Summers, Messing, & Rouse, the former containing five tribes. We revised membership of analyzed genera to make them all clades and erected Anneissia n. gen. Summers, Messing, & Rouse. Transformation analyses for morphological features generally used in feather star classification (e.g., ray branching patterns, articulations) and those specifically for Comatulidae (e.g., comb pinnule form, mouth placement) were labile with considerable homoplasy. These traditional characters, in combination, allow for generic diagnoses, but in most cases we did not recover apomorphies for subfamilies, tribes, and genera. New morphological characters that will be informative for crinoid taxonomy and identification are still needed. DNA sequence data currently provides the most reliable method of identification to the species-level for many taxa of Comatulidae.Comatulidae Fleming, 1828 (previously, and incorrectly, Comasteridae A.H. Clark, 1908a), is a group of feather star crinoids currently divided into four accepted subfamilies, 21 genera and approximately 95 nominal species. Comatulidae is the most commonly-encountered and species-rich crinoid group on shallow tropical coral reefs, particularly in the Indo-western Pacific region (IWP). We conducted a molecular phylogenetic analysis of the group with concatenated data from up to seven genes for 43 nominal species spanning 17 genera and all subfamilies. Basal nodes returned low support, but maximum likelihood, maximum parsimony, and Bayesian analyses were largely congruent, permitting an evaluation of current taxonomy and analysis of morphological character transformations. Two of the four current subfamilies were paraphyletic, whereas 15 of the 17 included genera returned as monophyletic. We provide a new classification with two subfamilies, Comatulinae and Comatellinae n. subfamily Summers, Messing, & Rouse, the former containing five tribes. We revised membership of analyzed genera to make them all clades and erected Anneissia n. gen. Summers, Messing, & Rouse. Transformation analyses for morphological features generally used in feather star classification (e.g., ray branching patterns, articulations) and those specifically for Comatulidae (e.g., comb pinnule form, mouth placement) were labile with considerable homoplasy. These traditional characters, in combination, allow for generic diagnoses, but in most cases we did not recover apomorphies for subfamilies, tribes, and genera. New morphological characters that will be informative for crinoid taxonomy and identification are still needed. DNA sequence data currently provides the most reliable method of identification to the species-level for many taxa of Comatulidae

    Turbo-taxonomy: 21 new species of Myzostomida (Annelida)

    No full text
    Summers, Mindi M., Al-Hakim, Iin Inayat, Rouse, Greg W. (2014): Turbo-taxonomy: 21 new species of Myzostomida (Annelida). Zootaxa 3873 (4): 301-344, DOI: http://dx.doi.org/10.11646/zootaxa.3873.4.
    corecore