18 research outputs found

    Microgeographic variations in Burkitt's lymphoma incidence correlate with differences in malnutrition, malaria and Epstein–Barr virus

    Get PDF
    BACKGROUND: Endemic Burkitt\u27s lymphoma (eBL) has been associated with Epstein-Barr virus (EBV) and holoendemic Plasmodium falciparum malaria. But recent evidence suggests that other risk factors are involved. METHODS: We hypothesised that selenoprotein glutathione peroxidase (GPx), a surrogate of nutritional status, is an important biomarker for eBL risk. We measured plasma GPx, anthropometric markers of malnutrition, EBV viral loads and malaria parasitaemia in children aged 1-9 years (n=258) from two locations in Nyanza Province, Kenya, with higher-than-expected and lower-than-expected incidence of eBL. The study participants were malaria asymptomatic children from the community. RESULTS: Children from eBL high-incidence areas had significantly lower GPx levels, high EBV viral load and more evidence of chronic malnutrition than children from eBL low-incidence areas (all P\u3c0.001). Additionally, GPx levels were significantly lower in children with the highest EBV viral load and for those with P. falciparum infections (P=0.035 and P=0.004, respectively). CONCLUSIONS: These results suggest that selenium deficiency may be a risk factor for eBL

    Fresh-blood-free diet for rearing malaria mosquito vectors

    Get PDF
    Mosquito breeding depends on the supply of fresh vertebrate blood, a major bottleneck for large-scale production of Anopheles spp. Feeding alternatives to fresh blood are thus a priority for research, outdoor large-cage trials and control interventions. Several artificial meal compositions were tested and Anopheles oogenesis, egg laying and development into the next generation of adult mosquitoes were followed. We identified blood-substitute-diets that supported ovarian development, egg maturation and fertility as well as, low progeny larval mortality, and normal development of offspring into adult mosquitoes. The formulated diet is an effective artificial meal, free of fresh blood that mimics a vertebrate blood meal and represents an important advance for the sustainability of Anopheles mosquito rearing in captivity.AgĂŞncia financiadora / NĂşmero do subsĂ­dio Bill and Melinda Gates Foundation OPP1138841 Fundacao para a Ciencia e Tecnologia GHTM - UID/Multi/04413/201 CCMAR - UID/Multi/04326/2013 UID/Multi/04326/2013 RF SFRH/BPD/89811/2012 FAPEAM, Brazil 19716.UNI472.2459.20022014info:eu-repo/semantics/publishedVersio

    The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors.</p> <p>Presentation of hypothesis</p> <p>If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor <it>vs </it>outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate.</p> <p>Testing the hypothesis</p> <p>Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude.</p> <p>Implications of the hypothesis</p> <p>Differences in indoor <it>vs </it>outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.</p

    Epstein-Barr virus genetic variation in lymphoblastoid cell lines derived from Kenyan pediatric population.

    No full text
    Epstein-Barr virus (EBV) is associated with Burkitt's lymphoma (BL), and in regions of sub-Saharan Africa where endemic BL is common, both the EBV Type 1 (EBV-1) and EBV Type 2 strains (EBV-2) are found. Little is known about genetic variation of EBV strains in areas of sub-Saharan Africa. In the present study, spontaneous lymphoblastoid cell lines (LCLs) were generated from samples obtained from Kenya. Polymerase chain reaction (PCR) amplification of the EBV genome was done using multiple primers and sequenced by next-generation sequencing (NGS). Phylogenetic analyses against the published EBV-1 and EBV-2 strains indicated that one sample, LCL10 was closely related to EBV-2, while the remaining 3 LCL samples were more closely related to EBV-1. Moreover, single nucleotide polymorphism (SNP) analyses showed clustering of LCL variants. We further show by analysis of EBNA-1, BLLF1, BPLF1, and BRRF2 that latent genes are less conserved than lytic genes in these LCLs from a single geographic region. In this study we have shown that NGS is highly useful for deciphering detailed inter and intra-variations in EBV genomes and that within a geographic region different EBV genetic variations can co-exist, the implications of which warrant further investigation. The findings will enhance our understanding of potential pathogenic variants critical to the development and maintenance of EBV-associated malignancies

    Non—synonymous SNPs compared with EBV-2.

    No full text
    <p>We observed that BPLF1, BLLF1, BRRF2, and EBNA1 had the most non—synonymous SNPs compared to EBV-2. For BPLF1 LCL1, LCL3 and B95.8 had the most SNPs; for BLLF1 LCL1, LCL9, LCL3 and B95.8 had the most SNPs, significantly there was no change in LCL-10 in BLLF1; for BRRF2 again most SNPs were noted in LCL1, LCL9, and LCL3; and for latent gene EBNA-1 most SNPs were observed in LCL1, LCL10, LCL9, and B95.8.</p

    Summary of all variants in LCL, B95.8, and Jijoye samples compared to EBV-1 and EBV-2.

    No full text
    <p>Summary of the mutations identified in the LCLs and control samples when compared to EBV-1, we noted that substitution was the most common type mutation, with Jijoye having the most and B95.8 having the least. Deletions and insertions were also observed ranging from 5 (B95.8) to 24 (Jijoye) and 5 (B95.8) and 13 (Jijoye) respectively. When compared to EBV-2 it is to be noted that substitution was the most common type of mutation, with LCL1 (627) having the most and LCL10 (301) having the least. Deletions and insertions were also observed ranging from 5 (Jijoye) to 11 (LCL-3) for deletion and 3 (Jijoye) to 10 (LCL-9) for insertion respectively.</p><p>Summary of all variants in LCL, B95.8, and Jijoye samples compared to EBV-1 and EBV-2.</p

    Phylogenetic alignments of LCLs to EBV-1 and EBV-2.

    No full text
    <p>The figure shows the alignment of the LCLs, B95.8 cell line and Jijoye cell line controls against EBV-1 and EBV-2. It is observed that B95.8 aligned closely to EBV-1, followed by LCL-3, LCL1 and LCL9, while LCL10 and Jijoye were distant from EBV-1. B95.8 is clustered with LCL3, LCLI and LCL9 are clustered together, while LCL10 and Jijoye are clustered together when compared to EBV-1. There were relatively less base changes in the middle for most of the LCLs except LCL10. Similar trend was observed on comparison with EBV-2, however, LCL10 was much closer to EBV-2 reference than Jijoye and the clustering was maintained as with EBV-1 reference. The bases were more conserved in the middle region of the genome than in the N and C terminus for LCL10 and Jijoye, for B95.8, LCL1, LCL3, and LCL9 the base changes were spread all over the genome with majority of the changes in the middle. Additionally, LCL3 was more conserved at the C-terminal end of the genome, as observed with EBV-1.</p

    Amino acid changes in EBNA1, BPLF1, BLLF1 and BRRF2.

    No full text
    <p><b>(A) EBNA1.</b> This was the only latent gene that had amino acid variation when compared to EBV-2. Towards the N-terminal we observed changes at position 16 and 18 respectively (Q>E, E>G)) for B95.8, Jijoye, and LCL-10, at position 24, 27, 410 (D>E, A>I, A>G) for B95.8, Jijoye, LCL10, LCL9, and LCL1 respectively. At the C-terminal we noted amino acid changes at 543 (M>T), 585 (P>T), and 599 (S>N) for LCL10 alone. <b>(B) BPLF1.</b> When we aligned BPLF1 against EBV-2 we noticed several amino acid changes that occurred on specific samples with some toward the N-terminal that were shared by more than 3 samples. The only amino acid changes observed in LCL10 alone occurred at the C-terminal at 2935 (L>P), 2987(P>L), and 3005 (R>Q).<b>(C) BLLF1.</b> Comparison of BLLF1 to EBV-2 was interesting in that the amino acid changes were similar in LCL-1, -3, -9, and B95.8, but generally lacking in LCL10 and Jijoye, showing a significant difference between the EBV-1 (B95.8, LCL1,LCL3, LCL9) and EBV-2(LCL10 and Jijoye) clustered samples. <b>(D) BRRF2.</b> When BRRF2 was compared to EBV-2 we noted that all the amino acid variations at the N-terminal occurred in B95.8, and in LCL3 at 382 (R>C). Amino acid variations in the middle were mainly in LCL9, LCL3, and LCL1. Amino acid changes at the C-terminal at position 464 (D>E), 477 (F>L), and 537 (I>V) were observed in most of the LCLs, B95.8, and Jijoye. <b>(E) BRRF2.</b> On comparing BRRF2 with EBV-1, the only gene we were able to show using Illumina sequencing against EBV-1, we observed that at the N-terminal we had similar amino acid changes in Jijoye, LCL10, LCL9, LCL3, and LCL1. Other amino acid changes occurred in multiple LCLs, except for changes at the C-terminal at positions 463 (D>A) and 464 (E>D) that were both in LCL10. It is to be noted that the amino acid changes in BRRF2 against EBV-2 were significantly different from that observed against EBV-1.</p
    corecore