472 research outputs found
Feasibility and acceptability of a televideo physical activity and nutrition program for recent kidney transplant recipients
This work is licensed under a Creative Commons Attribution 4.0 International License.Background
Post-transplant weight gain affects 50–90% of kidney transplant recipients adversely affecting survival, quality of life, and risk for diabetes and cardiovascular disease. Diet modification and physical activity may help prevent post-transplant weight gain. Methods for effective implementation of these lifestyle modifications are needed. The objective of this study is to assess the feasibility and acceptability of a remotely delivered nutrition and physical activity intervention among kidney transplant recipients. Secondary aims were to estimate the effectiveness of the intervention in producing changes in physical activity, qualify of life, fruit and vegetable intake, and consumption of whole grains and water from baseline to 6 months.
Methods
A randomized controlled study for stable kidney transplant recipients between 6 and 12 months post-transplantation was conducted. Participants were randomly assigned 1:1 to a technology-based, lifestyle modification program (intervention) or to enhanced usual care (control).
Results
The first 10 kidney transplant recipients screened were eligible and randomized into the intervention and control groups with no significant between-group differences at baseline. Health coaching attendance (78%) and adherence to reporting healthy behaviors (86%) were high. All participants returned for final assessments. The weight in controls remained stable, while the intervention arm showed weight gain at 3 and 6 months. Improvements were found for physical activity, quality of life, and fruit and vegetable intake in both groups. All participants would recommend the program to other transplant recipients.
Conclusions
Our data suggest that a remotely delivered televideo nutrition and physical activity intervention is feasible and valued by patients. These findings will aid in the development of a larger, more prescriptive, randomized trial to address weight gain prevention
Concepts of mental disorders in the United Kingdom : Similarities and differences between the lay public and psychiatrists
BACKGROUND: The lay public often conceptualise mental disorders in a different way to mental health professionals, and this can negatively impact on outcomes when in treatment. AIMS: This study explored which disorders the lay public are familiar with, which theoretical models they understand, which they endorse and how they compared to a sample of psychiatrists. METHODS: The Maudsley Attitude Questionnaire (MAQ), typically used to assess mental health professional's concepts of mental disorders, was adapted for use by a lay community sample (N = 160). The results were compared with a sample of psychiatrists (N = 76). RESULTS: The MAQ appeared to be accessible to the lay public, providing some interesting preliminary findings: in order, the lay sample reported having the best understanding of depression followed by generalised anxiety, schizophrenia and finally antisocial personality disorder. They best understood spiritualist, nihilist and social realist theoretical models of these disorders, but were most likely to endorse biological, behavioural and cognitive models. The lay public were significantly more likely to endorse some models for certain disorders suggesting a nuanced understanding of the cause and likely cure, of various disorders. Ratings often differed significantly from the sample of psychiatrists who were relatively steadfast in their endorsement of the biological model. CONCLUSION: The adapted MAQ appeared accessible to the lay sample. Results suggest that the lay public are generally aligned with evidence-driven concepts of common disorders, but may not always understand or agree with how mental health professionals conceptualise them. The possible causes of these differences, future avenues for research and the implications for more collaborative, patient-clinician conceptualisations are discussed.Peer reviewedFinal Accepted Versio
You are not like the rest of them: disrupting meta-perceptions dilutes dehumanization
Political polarization, fueled by conflicting meta-perceptions, presents a critical obstacle to constructive discourse and collaboration. These meta-perceptions-how one group perceives another group's views of them-are often inaccurate and can lead to detrimental outcomes such as increased hostility and dehumanization. Across two studies, we introduce and experimentally test a novel approach that exposes participants to atypical, counter-stereotypical members of an opposing group who either confirm or disrupt their existing meta-perceptions. We find that disrupting meta-perceptions decreases dehumanization of the partner, increases interest in wanting to learn more about them, but fails to increase willingness to interact in the future with the partner. We conduct an exploratory text analysis to uncover differences in word choice by condition. Our research adds a new dimension to the existing body of work by examining the efficacy of alternative intervention strategies to improve intergroup relations in politically polarized settings
Diffusing an Innovation: Clinician Perceptions of Continuous Predictive Analytics Monitoring in Intensive Care
Background The purpose of this article is to describe neonatal intensive care unit
clinician perceptions of a continuous predictive analytics technology and how those
perceptions influenced clinician adoption. Adopting and integrating new technology
into care is notoriously slow and difficult; realizing expected gains remain a challenge.
Methods Semistructured interviews from a cross-section of neonatal physicians
(n ¼ 14) and nurses (n ¼ 8) from a single U.S. medical center were collected 18 months
following the conclusion of the predictive monitoring technology randomized control
trial. Following qualitative descriptive analysis, innovation attributes from Diffusion of
Innovation Theory-guided thematic development.
Results Results suggest that the combination of physical location as well as lack of
integration into work flow or methods of using data in care decisionmaking may have
delayed clinicians from routinely paying attention to the data. Once data were routinely
collected, documented, and reported during patient rounds and patient handoffs,
clinicians came to view data as another vital sign. Through clinicians’ observation of
senior physicians and nurses, and ongoing dialogue about data trends and patient
status, clinicians learned how to integrate these data in care decision making (e.g.,
differential diagnosis) and came to value the technology as beneficial to care delivery.
Discussion The use of newly created predictive technologies that provide early warning of
illness may require implementation strategies that acknowledge the risk–benefit of
treatment cliniciansmust balance and take advantage of existing clinician trainingmethods
Recommended from our members
Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey.
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management
Amalgame: Cosmological Constraints from the First Combined Photometric Supernova Sample
Future constraints of cosmological parameters from Type Ia supernovae (SNe
Ia) will depend on the use of photometric samples, those samples without
spectroscopic measurements of the SNe Ia. There is a growing number of analyses
that show that photometric samples can be utilised for precision cosmological
studies with minimal systematic uncertainties. To investigate this claim, we
perform the first analysis that combines two separate photometric samples, SDSS
and Pan-STARRS, without including a low-redshift anchor. We evaluate the
consistency of the cosmological parameters from these two samples and find they
are consistent with each other to under . From the combined sample,
named Amalgame, we measure with SN alone in a flat
CDM model, and and when combining with a Planck data prior and a flat
CDM model. These results are consistent with constraints from the Pantheon+
analysis of only spectroscopically confirmed SNe Ia, and show that there are no
significant impediments to analyses of purely photometric samples of SNe Ia.Comment: Submitting to MNRAS; comments welcom
Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes
Background & Aims: Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols,
for direct comparison with fresh fetal and adult hepatocytes.
Methods: Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes.
Results: HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material,
HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests,
devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics.
Conclusions: HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes
A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization
(Brief Summary) What is the total radiative content of the Universe since the
epoch of recombination? The extragalactic background light (EBL) spectrum
captures the redshifted energy released from the first stellar objects,
protogalaxies, and galaxies throughout cosmic history. Yet, we have not
determined the brightness of the extragalactic sky from UV/optical to
far-infrared wavelengths with sufficient accuracy to establish the radiative
content of the Universe to better than an order of magnitude. Among many
science topics, an accurate measurement of the EBL spectrum from optical to
far-IR wavelengths, will address: What is the total energy released by stellar
nucleosynthesis over cosmic history? Was significant energy released by
non-stellar processes? Is there a diffuse component to the EBL anywhere from
optical to sub-millimeter? When did first stars appear and how luminous was the
reionization epoch? Absolute optical to mid-IR EBL spectrum to an
astrophysically interesting accuracy can be established by wide field imagingat
a distance of 5 AU or above the ecliptic plane where the zodiacal foreground is
reduced by more than two orders of magnitude.Comment: 7 pages; Science White Paper for the US Astro 2010-2020 Decadal
Survey. If interested in further community-wide efforts on this topic please
contact the first autho
Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway
Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway
Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
- …