1,793 research outputs found

    “TO CATCH HIGH LEVEL ATTENTION” HOW INTELLIGENCE INFLUENCES PEACETIME FORCE DEVELOPMENT IN THE U.S. MILITARY

    Get PDF
    This research paper investigates how the United States has approached peacetime force development before a great power conflict. Specifically, this paper investigates intelligence support to capability development, also known as Institutional Intelligence and presents a simple question. Does knowledge of our competitors capabilities drive United States Force Development

    Recent Decisions

    Get PDF
    Comments on recent decisions by Kenneth K. Konop, Raymond J. Sullivan, Robert E. Duffy, Joseph Yoch, Carl Frankovitch, Joseph Wetli, Harold Tuberty, and Alvin G. Kolski

    Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial

    Get PDF
    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region

    What is Wrong with Water Barometers?

    Get PDF
    Every student who studies atmospheric pressure in physics or chemistry learns the principles behind the construction of barometers. Cistern barometers, such as those found in most laboratories, consist of a long glass tube containing an inverted column of liquid having an open end in a cistern of the liquid. Students learn that the column of liquid is supported by air pressure and is equal in weight to a column of air of the same diameter

    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Get PDF
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated

    Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies

    Get PDF
    The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) contains the observatory's four science instruments and their support subsystems. During alignment and test of the integrated ISIM at NASA's Goddard Space Flight Center (GSFC), the Optical'telescope element SIMulator (OSIM) will be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. These fixtures, the Master Alignment Target Fixture (MAW) and the ISIM Alignment Target Fixture (IATF), will provide continuous, six degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing. These fixtures will allow us to position the OSIM and maintain OSIM-ISIM alignment to better than 10 microns in translation and 250 micro-radians in rotation. We will provide a brief overview of the OSIM system and calibration and we will also discuss the relevance of these fixtures in the context of the overall ISIM alignment and verification plan

    Pair-instability and super-luminous supernova discoveries at z = 2.05, z = 2.50, and z = 3.90

    Get PDF
    We present the discovery of three super-luminous supernovae (SLSNe) at z = 2 - 4 as part of our survey to detect ultraviolet-luminous supernova at z > 2. SLSNe are ≥10 times more luminous than normal supernova types, reaching peak luminosities of ≳10^(44) erg s^(−1). A small subset of SLSNe (type SLSN-R) exhibit a slow evolution, and thus enormous integrated energies (≳10^(51) erg), consistent with the radiative decay of several solar masses of 56 Ni. SLSN-R are believed to be the deaths of very massive stars, ∼140 - 260 M_⊙, that are theorized to result in pair-instability supernovae. Two of the high redshift SLSNe presented here are consistent with the behavior of SLSN-R out to the extent in which their light curves are sampled, with the third event being consistent with the more rapid fade of the type II-L SLSN SN 2008es at z = 0.205. SLSNe are extremely rare locally but are expected to have been more common in the early Universe and as members of the first generation of stars to form after the Big Bang, the Population III stars. The high intrinsic luminosity of SLSNe and their detectability using our image-stacking technique out to z ∼ 6 provide the first viable route to detect and study the deaths of massive Population III stars which are expected to form in pristine gas at redshifts as low as z ∼ 2

    Towards a Cosmological Hubble Diagram for Type II-P Supernovae

    Get PDF
    We present the first high-redshift Hubble diagram for Type II-P supernovae (SNe II-P) based upon five events at redshift up to z~0.3. This diagram was constructed using photometry from the Canada-France-Hawaii Telescope Supernova Legacy Survey and absorption line spectroscopy from the Keck observatory. The method used to measure distances to these supernovae is based on recent work by Hamuy & Pinto (2002) and exploits a correlation between the absolute brightness of SNe II-P and the expansion velocities derived from the minimum of the Fe II 516.9 nm P-Cygni feature observed during the plateau phases. We present three refinements to this method which significantly improve the practicality of measuring the distances of SNe II-P at cosmologically interesting redshifts. These are an extinction correction measurement based on the V-I colors at day 50, a cross-correlation measurement for the expansion velocity and the ability to extrapolate such velocities accurately over almost the entire plateau phase. We apply this revised method to our dataset of high-redshift SNe II-P and find that the resulting Hubble diagram has a scatter of only 0.26 magnitudes, thus demonstrating the feasibility of measuring the expansion history, with present facilities, using a method independent of that based upon supernovae of Type Ia.Comment: 36 pages, 16 figures, accepted for publication in Ap
    corecore