173 research outputs found

    Molecularly imprinted biofunctional device: Using polymer surfaces on surgical instruments to catalyze blood coagulation

    Get PDF
    Heated scalpels are a common method for reducing surgical blood loss. However, these methods damage tissue. Additionally, blood products used in topical hemostatic agents have inherent risks of allergic reaction, infection, and adhesions. Unlike these methods, the presented medical device utilizes molecular imprinting, an established technique that works by the creation of artificial protein binding site in order to activate biological response. This novel medical application of molecular imprints avoids heat damage or use foreign blood products by particular sequencing of imprints to catalyze blood coagulation. Currently, molecular imprints have been utilized as artificial chaperones in potential therapies for protein conformational diseases. In other instances, molecular imprinting is utilized in biosensors, namely for detecting changes in blood sugar, and for detection of viruses by interacting with antibodies in ways to provide diagnostics. Thus far, techniques using silica has shown successful specificity for imprinting the complex shape of hemoglobin yet the potential of this technique for the application of blood-coagulating surgical instruments is largely unexplored. This research investigates this particular medical application and inclusion of acoustics in the imprinting process as well as ultrasonic waves and fiber optics for promoting controlled release of proteins from molecular imprints and distribution of functionalized nanoparticles

    Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression.

    Get PDF
    BACKGROUND: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation

    Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms

    Get PDF
    Microorganisms in glacier ice provide tens to hundreds of thousands of years archive for a changing climate and microbial responses to it. Analyzing ancient ice is impeded by technical issues, including limited ice, low biomass, and contamination. While many approaches have been evaluated and advanced to remove contaminants on ice core surfaces, few studies leverage modern sequencing to establish in silico decontamination protocols for glacier ice. Here we sought to apply such “clean” sampling techniques with in silico decontamination approaches used elsewhere to investigate microorganisms archived in ice at ~41 (D41, ~20,000 years) and ~49 m (D49, ~30,000 years) depth in an ice core (GS3) from the summit of the Guliya ice cap in the northwestern Tibetan Plateau. Four “background” controls were established – a co-processed sterile water artificial ice core, two air samples collected from the ice processing laboratories, and a blank, sterile water sample – and used to assess contaminant microbial diversity and abundances. Amplicon sequencing revealed 29 microbial genera in these controls, but quantitative PCR showed that the controls contained about 50–100-times less 16S DNA than the glacial ice samples. As in prior work, we interpreted these low-abundance taxa in controls as “contaminants” and proportionally removed them in silico from the GS3 ice amplicon data. Because of the low biomass in the controls, we also compared prokaryotic 16S DNA amplicons from pre-amplified (by re-conditioning PCR) and standard amplicon sequencing, and found the resulting microbial profiles to be repeatable and nearly identical. Ecologically, the contaminant-controlled ice microbial profiles revealed significantly different microorganisms across the two depths in the GS3 ice core, which is consistent with changing climate, as reported for other glacier ice samples. Many GS3 ice core genera, including Methylobacterium, Sphingomonas, Flavobacterium, Janthinobacterium, Polaromonas, and Rhodobacter, were also abundant in previously studied ice cores, which suggests wide distribution across glacier environments. Together these findings help further establish “clean” procedures for studying low-biomass ice microbial communities and contribute to a baseline understanding of microorganisms archived in glacier ice

    Assessment of Cystatin C level for risk stratification in adults with chronic kidney disease

    Get PDF
    Importance: Kidney function is usually estimated from serum creatinine level, whereas an alternative glomerular filtration marker (cystatin C level) associates more closely with future risk of cardiovascular disease (CVD) and mortality. Objectives: To evaluate whether testing concordance between estimated glomerular filtration rates based on cystatin C (eGFRcys) and creatinine (eGFRcr) levels would improve risk stratification for future outcomes and whether estimations differ by age. Design, Setting, and Participants: A prospective population-based cohort study (UK Biobank), with participants recruited between 2006-2010 with median follow-up of 11.5 (IQR, 10.8-12.2) years; data were collected until August 31, 2020. Participants had eGFRcr greater than or equal to 45 mL/min/1.73 m2, albuminuria (albumin <30 mg/g), and no preexisting CVD or kidney failure. Exposures: Chronic kidney disease status was categorized by concordance between eGFRcr and eGFRcys across the threshold for hronic kidney disease (CKD) diagnosis (60 mL/min/1.73 m2). Main Outcomes and Measures: Ten-year probabilities of CVD, mortality, and kidney failure were assessed according to CKD status. Multivariable-adjusted Cox proportional hazards models tested associations between CVD and mortality. Area under the receiving operating curve tested discrimination of eGFRcr and eGFRcys for CVD and mortality. The Net Reclassification Index assessed the usefulness of eGFRcr and eGFRcys for CVD risk stratification. Analyses were stratified by older (age 65-73 years) and younger (age <65 years) age. Results: There were 428 402 participants: median age was 57 (IQR, 50-63) years and 237 173 (55.4%) were women. Among 76 629 older participants, there were 9335 deaths and 5205 CVD events. Among 351 773 younger participants, there were 14 776 deaths and 9328 CVD events. The 10-year probability of kidney failure was less than 0.1%. Regardless of the eGFRcr, the 10-year probabilities of CVD and mortality were low when eGFRcys was greater than or equal to 60 mL/min/1.73 m2; conversely, with eGFRcys less than 60 mL/min/1.73 m2, 10-year risks were nearly doubled in older adults and more than doubled in younger adults. Use of eGFRcys better discriminated CVD and mortality risk than eGFRcr. Across a 7.5% 10-year risk threshold for CVD, eGFRcys improved case Net Reclassification Index by 0.7% (95% CI, 0.6%-0.8%) in older people and 0.7% (95% CI, 0.7%-0.8%) in younger people; eGFRcr did not add to CVD risk estimation. Conclusions and Relevance: The findings of this study suggest that eGFRcr 45 to 59 mL/min/1.73 m2 includes a proportion of individuals at low risk and fails to capture a substantial proportion of individuals at high-risk for CVD and mortality. The eGFRcys appears to be more sensitive and specific for CVD and mortality risks in mild CKD

    Behavioral Coping Phenotypes and Associated Psychosocial Outcomes of Pregnant and Postpartum Women During the COVID-19 Pandemic

    Get PDF
    The impact of COVID-19-related stress on perinatal women is of heightened public health concern given the established intergenerational impact of maternal stress-exposure on infants and fetuses. There is urgent need to characterize the coping styles associated with adverse psychosocial outcomes in perinatal women during the COVID-19 pandemic to help mitigate the potential for lasting sequelae on both mothers and infants. This study uses a data-driven approach to identify the patterns of behavioral coping strategies that associate with maternal psychosocial distress during the COVID-19 pandemic in a large multicenter sample of pregnant women (N = 2876) and postpartum women (N = 1536). Data was collected from 9 states across the United States from March to October 2020. Women reported behaviors they were engaging in to manage pandemic-related stress, symptoms of depression, anxiety and global psychological distress, as well as changes in energy levels, sleep quality and stress levels. Using latent profile analysis, we identified four behavioral phenotypes of coping strategies. Critically, phenotypes with high levels of passive coping strategies (increased screen time, social media, and intake of comfort foods) were associated with elevated symptoms of depression, anxiety, and global psychological distress, as well as worsening stress and energy levels, relative to other coping phenotypes. In contrast, phenotypes with high levels of active coping strategies (social support, and self-care) were associated with greater resiliency relative to other phenotypes. The identification of these widespread coping phenotypes reveals novel behavioral patterns associated with risk and resiliency to pandemic-related stress in perinatal women. These findings may contribute to early identification of women at risk for poor long-term outcomes and indicate malleable targets for interventions aimed at mitigating lasting sequelae on women and children during the COVID-19 pandemic

    A study protocol of a randomised controlled trial incorporating a health economic analysis to investigate if additional allied health services for rehabilitation reduce length of stay without compromising patient outcomes

    Get PDF
    Background Reducing patient length of stay is a high priority for health service providers. Preliminary information suggests additional Saturday rehabilitation services could reduce the time a patient stays in hospital by three days. This large trial will examine if providing additional physiotherapy and occupational therapy services on a Saturday reduces health care costs, and improves the health of hospital inpatients receiving rehabilitation compared to the usual Monday to Friday service. We will also investigate the cost effectiveness and patient outcomes of such a service. Methods/Design A randomised controlled trial will evaluate the effect of providing additional physiotherapy and occupational therapy for rehabilitation. Seven hundred and twelve patients receiving inpatient rehabilitation at two metropolitan sites will be randomly allocated to the intervention group or control group. The control group will receive usual care physiotherapy and occupational therapy from Monday to Friday while the intervention group will receive the same amount of rehabilitation as the control group Monday to Friday plus a full physiotherapy and occupational therapy service on Saturday. The primary outcomes will be patient length of stay, quality of life (EuroQol questionnaire), the Functional Independence Measure (FIM), and health utilization and cost data. Secondary outcomes will assess clinical outcomes relevant to the goals of therapy: the 10 metre walk test, the timed up and go test, the Personal Care Participation Assessment and Resource Tool (PC PART), and the modified motor assessment scale. Blinded assessors will assess outcomes at admission and discharge, and follow up data on quality of life, function and health care costs will be collected at 6 and 12 months after discharge. Between group differences will be analysed with analysis of covariance using baseline measures as the covariate. A health economic analysis will be carried out alongside the randomised controlled trial. Discussion This paper outlines the study protocol for the first fully powered randomised controlled trial incorporating a health economic analysis to establish if additional Saturday allied health services for rehabilitation inpatients reduces length of stay without compromising discharge outcomes. If successful, this trial will have substantial health benefits for the patients and for organizations delivering rehabilitation services

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease

    Get PDF
    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 \textit{ITGA4 } and ITGB8\textit{ITGB8}) and at previously implicated loci (ITGAL \textit{ITGAL }and ICAM1\textit{ICAM1}). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2\textit{PLCG2}, and a negative regulator of inflammation, SLAMF8\textit{SLAMF8}. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.This work was co-funded by the Wellcome Trust [098051] and the Medical Research Council, UK [MR/J00314X/1]. Case collections were supported by Crohn’s and Colitis UK. KMdL, LM, CAL, YL, DR, JG-A, NJP, CAA and JCB are supported by the Wellcome Trust [098051; 093885/Z/10/Z; 094491/Z/10/Z]. KMdL is supported by a Woolf Fisher Trust scholarship. CAL is a clinical lecturer funded by the NIHR. We thank Anna Stanton for co-ordinating the Guy’s and St Thomas’ patient recruitment. We acknowledge support from the Department of Health via the NIHR comprehensive Biomedical Research Centre awards to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and to Addenbrooke’s Hospital, Cambridge in partnership with the University of Cambridge. This research was also supported by the NIHR Newcastle Biomedical Research Centre. The UK Household Longitudinal Study is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council

    Comparison of Hepatic-like Cell Production from Human Embryonic Stem Cells and Adult Liver Progenitor Cells: CAR Transduction Activates a Battery of Detoxification Genes

    Get PDF
    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate
    corecore