664 research outputs found

    Young's modulus of polyelectrolyte multilayers from microcapsule swelling

    Full text link
    We measure Young's modulus of a free polyelectrolyte multilayer film by studying osmotically induced swelling of polyelectrolyte multilayer microcapsules filled with the polyelectrolyte solution. Different filling techniques and core templates were used for the capsule preparation. Varying the concentration of the polyelectrolyte inside the capsule, its radius and the shell thickness yielded an estimate of an upper limit for Young's modulus of the order of 100 MPa. This corresponds to an elastomer and reflects strong interactions between polyanions and polycations in the multilayer

    Giant change in IR light transmission in La_{0.67}Ca_{0.33}MnO_{3} film near the Curie temperature: promising application in optical devices

    Full text link
    Transport, magnetic, magneto-optical (Kerr effect) and optical (light absorption) properties have been studied in an oriented polycrystalline La_{0.67}Ca_{0.33}MnO_{3} film which shows colossal magneto-resistance. The correlations between these properties are presented. A giant change in IR light transmission (more than a 1000-fold decrease) is observed on crossing the Curie temperature (about 270 K) from high to low temperature. Large changes in transmittance in a magnetic field were observed as well. The giant changes in transmittance and the large magneto-transmittance can be used for development of IR optoelectronic devices controlled by thermal and magnetic fields. Required material characteristics of doped manganites for these devices are discussed.Comment: 7 pages, 7 figures, submitted to J. Appl. Phy

    Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors

    Full text link
    We study fluctuations of spin-polarized currents in a three-terminal spin-valve system consisting of a diffusive normal metal wire connected by tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent Boltzmann-Langevin equation, we develop a semiclassical theory of charge and spin currents and the correlations of the currents fluctuations. In the three terminal system, we show that current fluctuations are strongly affected by the spin-flip scattering in the normal metal and the spin polarizations of the terminals, which may point in different directions. We analyze the dependence of the shot noise and the cross-correlations on the spin-flip scattering rate in the full range of the spin polarizations and for different magnetic configurations. Our result demonstrate that noise measurements in multi-terminal devices allow to determine the spin-flip scattering rate by changing the polarizations of ferromagnetic terminals.Comment: 12 pages, 5 figure

    Breakdown of Universality in Quantum Chaotic Transport: the Two-Phase Dynamical Fluid Model

    Full text link
    We investigate the transport properties of open quantum chaotic systems in the semiclassical limit. We show how the transmission spectrum, the conductance fluctuations, and their correlations are influenced by the underlying chaotic classical dynamics, and result from the separation of the quantum phase space into a stochastic and a deterministic phase. Consequently, sample-to-sample conductance fluctuations lose their universality, while the persistence of a finite stochastic phase protects the universality of conductance fluctuations under variation of a quantum parameter.Comment: 4 pages, 3 figures in .eps format; final version to appear in Physical Review Letter

    Slow-light optical bullets in arrays of nonlinear Bragg-grating waveguides

    Get PDF
    We demonstrate how to control independently both spatial and temporal dynamics of slow light. We reveal that specially designed nonlinear waveguide arrays with phase-shifted Bragg gratings demonstrate the frequency-independent spatial diffraction near the edge of the photonic bandgap, where the group velocity of light can be strongly reduced. We show in numerical simulations that such structures allow a great flexibility in designing and controlling dispersion characteristics, and open a way for efficient spatiotemporal self-trapping and the formation of slow-light optical bullets.Comment: 4 pages, 4 figures; available from http://link.aps.org/abstract/PRL/v97/e23390

    Electron shot noise beyond the second moment

    Full text link
    The form of electron counting statistics of the tunneling current noise in a generic many-body interacting electron system is obtained. The third correlator of current fluctuations (the skewness of the charge counting distribution) has a universal relation with the current I and the quasiparticle charge q. This relation C_3 = q^2 I holds in a wide bias voltage range, both at large and small eV/kT, thereby representing an advantage compared to the Schottky formula. We consider the possibility of using the counting statistics for detecting quasiparticle charge at high temperature.Comment: 4 pages, 2 figure

    Shot Noise by Quantum Scattering in Chaotic Cavities

    Get PDF
    We have experimentally studied shot noise of chaotic cavities defined by two quantum point contacts in series. The cavity noise is determined as 1/4*2e|I| in agreement with theory and can be well distinguished from other contributions to noise generated at the contacts. Subsequently, we have found that cavity noise decreases if one of the contacts is further opened and reaches nearly zero for a highly asymmetric cavity.Comment: 4 pages, 4 figures, REVTe

    Nonlinear voltage dependence of the shot noise in mesoscopic degenerate conductors with strong electron-electron scattering

    Get PDF
    It is shown that measurements of zero-frequency shot-noise can provide information on electron-electron interaction, because the strong interaction results in the nonlinear voltage dependence of the shot noise in metallic wires. This is due to the fact that the Wiedemann-Franz law is no longer valid in the case of considerable electron-electron interaction. The deviations from this law increase the noise power and make it dependent strongly on the ratio of electron-electron and electron-impurity scattering rates.Comment: 4 pages, 2 figures, revised version according to referee's comment

    Influence of a Random Telegraph Process on the Transport through a Point Contact

    Full text link
    We describe the transport properties of a point contact under the influence of a classical two-level fluctuator. We employ a transfer matrix formalism allowing us to calculate arbitrary correlation functions of the stochastic process by mapping them on matrix products. The result is used to obtain the generating function of the full counting statistics of a classical point contact subject to a classical fluctuator, including extensions to a pair of two-level fluctuators as well as to a quantum point contact. We show that the noise in the quantum point contact is a sum of the (quantum) partitioning noise and the (classical) noise due to the two-level fluctuator. As a side result, we obtain the full counting statistics of a quantum point contact with time-dependent transmission probabilities.Comment: 8 pages, 2 figure; a new section about experiments and a figure showing the crossover from sub- to superpoissonian noise have been adde

    Magnetic-field-dependent zero-bias diffusive anomaly in Pb oxide-n-InAs structures: Coexistence of two- and three-dimensional states

    Full text link
    The results of experimental and theoretical studies of zero-bias anomaly (ZBA) in the Pb-oxide-n-InAs tunnel structures in magnetic field up to 6T are presented. A specific feature of the structures is a coexistence of the 2D and 3D states at the Fermi energy near the semiconductor surface. The dependence of the measured ZBA amplitude on the strength and orientation of the applied magnetic field is in agreement with the proposed theoretical model. According to this model, electrons tunnel into 2D states, and move diffusively in the 2D layer, whereas the main contribution to the screening comes from 3D electrons.Comment: 8 double-column pages, REVTeX, 9 eps figures embedded with epsf, published versio
    corecore