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It is shown that measurements of zero-frequency shot noise can provide information on electron- 
electron interaction, because the strong interaction results in the nonlinear voltage dependence of the 
shot noise in metallic wires. This is due to the fact that the Wiedemann-Franz law is no longer valid 
in the case of considerable electron-electron interaction. The deviations from this law increase the 
noise power and make it strongly dependent on the ratio of electron-electron and electron-impurity scat
tering rates.

PACS numbers: 73.23.- b ,  71.10.Ay, 72 .10 .-d , 72.70.+ m

Current fluctuations in nonequilibrium mesoscopic dif
fusive conductors proportional to the average current 7 
manifest the discreteness of charge carriers and are usu
ally addressed as the shot noise (for a recent review of the 
subject see [11). The effect depends on the length of 
the conductor L, as well as the electron-impurity lei and 
the electron-electron lee scattering mean free lengths. In 
order to observe shot noise, the electron-phonon mean free 
length lep has to be the largest scale of problem. This 
means that inelastic effects of electron-lattice thermaliza- 
tion can be disregarded. Otherwise, at lep <  L, the noise 
powerS =  2 /  d t  8 1(t) 5 /(0) just approaches the Johnson- 
Nyquist equilibrium value 46”/', where G  is the conduc
tance and T  is the lattice temperature.

Different regimes of shot noise exist.
(i) Di f fus ive  regime, lei <sc L «  lee. —  In this case the 

effects of electron-electron ( e-e)  scattering are negligible. 
The energy of each electron is conserved during its diffu
sive motion through a conductor as soon as the electron- 
impurity scattering is elastic. The electronic distribution 
function satisfies the diffusion equation and has a two-step 
shape f { e , x )  =  (1 /2  -  x /L )/o (e  -  e V / 2 )  + (1 /2  + 
x /L )/o (e  + eV /2), where /o  is the Fermi-Dirac function, 
and ± e V /2  are the shifts of chemical potentials of the 
left and right reservoirs, under bias voltage V.  The noise 
power in this regime is known to be 1/3 of the Poissonian 
value 2e l  [2,3].

(ii) Hot-electron regime, lei <5C lee <5C L .— The e-e  
scattering is still small in a sense that all transport pro
cesses are governed by the impurity scattering. However, 
e-e  scattering is already efficient enough to smear the 
two-step partition function and thermalize electrons to 
the local Fermi-Dirac distribution with some effective 
temperature profile Te (x) ~  0.3 eV »  T.  that is to be 
found from the equation for energy transfer. The noise 
power, now simply representing the average Johnson- 
Nyquist noise in the conductor with inhomogeneous 
temperature distribution Te (x),  is equal to \ /3 /4  instead 
of the 1/3 value [4,5]. The crossover from the diffu

sive to the hot-electron regime has been experimentally 
confirmed [6,7].

These values of shot noise are universal  [8,9]; i.e., they 
do not depend on the applied voltage, shape of the conduc
tor, anisotropy, distribution, and concentration of impuri
ties, etc. It has been noted [91 that the universality of the 
hot-electron shot noise has its origin in the Wiedemann- 
Franz law for impurity scattering (proportionality of 
the thermal conductivity to the current conductivity, see 
Ref. [101).

(iii) lee <  lei <5C L .— This regime has not been studied 
yet. It was pointed out that the electron distribution func
tion becomes Fermi-Dirac at relatively weak e-e scattering 
and does not change with its further increase [111. There
fore, in order to obtain information about e-e scattering 
the finite frequency noise power has been studied, which is 
sensitive to the details of Coulomb screening and e -e  inter
action [11,121.

However, the zero-frequency noise power becomes de
pendent on the details of e -e  scattering if the applied volt
age is high enough. Shot noise power in mesoscopic wires 
is a fruit of both the energy transport and the charge trans
port. As soon as even normal processes of e-e  scattering 
affect considerably the thermal conductivity (violating the 
Wiedemann-Franz law) they must result in a change of the 
shot noise power. Here we show that this is really the case. 
Despite the fact that the electron distribution function is of 
the Fermi-Dirac form regardless of the ratio between lee 
and lei, the temperature profile Te(x)  is very sensitive to 
this ratio. The shot noise power then acquires nonlinear de
pendence on the applied voltage and might even exceed the 
Poissonian value. It becomes a possible probe of e-e  in
teraction, as it happens, e.g., in the case of nondegenerate 
mesoscopic conductors (although because of completely 
different reason) [13-151.

Super-Poissonian noise has been reported in a number 
of mesoscopic systems. In Refs. [16,171 the enhancement 
of shot noise was experimentally found in resonant- 
tunneling structures biased in the negative differential
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resistance regions of their I - V  characteristics. Magnetic 
field has been used to pronounce this enhancement [18]. 
Coulomb interaction effects on the shot noise in resonant 
quantum wells near an instability threshold were studied 
in Ref. [19]. The effects of nonlinear I - V  characteristics 
were considered microscopically with the self-consistent 
Coulomb potential taken into account [20]. In these 
studies disorder does not play a role.

In the present paper we show how super-Poissonian 
noise can occur in a disordered metallic wire with strong 
e-e  scattering. Despite the fact that the I - V  characteristic 
of such a wire is still linear, the noise power has a nonlin
ear voltage dependence. To simplify the problem as much 
as possible we disregard all umklapp processes. As usual, 
the convenient starting point is the stationary Boltzmann 
equation,

d f P(r)
v • V /P(r) + e E  ■

dp ~  4 i [ /p ]  + h e i f p ] + -Cp

(1)
for the electron distribution function in the phase space 
/ p (r), where 4 , [ / p] and I ee\_fp] are the electron-impurity 
and e-e  collision integrals, respectively,

U f p l  =
d 3p'  
(2 t t ) 3

WeiS( € p -  €p, ) ( f p ,  -  f p ) ,  (2)

,  r f  i -  I 2d3pt  2d3kl e e l f p l  I w eeO\€p ek ~  €k>)(2w)3 (2w)3

x  [ / p '/ k 'd  -  f p )  a  -  A )

- / p / k ( l  - / p ' ) ( l  - / k ' ) L  (3)
where p + p' = k + k'. The quasimomentum conserva
tion law is exact due to the absence of umklapp processes. 
The scattering amplitudes of the electron-impurity w e-t and 
e-e  interaction w ee are independent of the directions of 
scattering particles (this restriction is not crucial). The last 
term in Eq. (1) is the extraneous Langevin source, zero 
on average £ p =  0, with the correlator £ p £ k  defined by 
the very structure of the collision integrals (2) and (3) [21]. 
Both electron-impurity and e-e  collisions contribute to this 
correlator. Its exact form is quite cumbersome but will not 
be needed. By multiplying the kinetic equation (1) by the 
kinetic energy e p — fx, and integrating over the momen
tum space one gets the energy balance equation,

2cfp_  

( I t t ) 3
v(ep -  f i ) f p (r) =  eE

l d 3p
( I tt)3

v / P(r) ,

(4)
which simply means that the dissipative energy flow is 
equal to the Joule heat.

To solve Eq. (1) we make the substitution [22]

A(r) -  M O (5)

where /o ( f )  is the Fermi-Dirac function of the energy 
variable f  =  (ep — fx ) /T e, with the effective tempera
ture Te(r). (Throughout the paper we use the units such

that H =  kg  =  1.) The (yet unknown) functions T e(r) 
and q(f) determine the nonequilibrium distribution of 
electrons near the Fermi surface. It is convenient to 
write the function q(f) =  q5(f) + qa(£) as the sum 
of even function q5( — f )  =  q*(f) and odd function 
q«(—i )  =  — <la(£), respectively. In the leading order 
in T e/ f x ,  the symmetric function q5(f) determines the 
electric current while the antisymmetric one qa(f) gives 
the dissipative heat flow. Now the energy balance equa
tion (4) takes the form

V • Te d i ^ - i q a( i )  =  e E  
dt; d ^ q M ) ,  dt;

(6)

as soon as we neglect terms of order Te//uL. The integrals 
in Eq. (6) are expanded over the infinite energy axis due 
to the fast exponential decay of the factor d /o /d f .  The 
kinetic equation (1) splits upon the substitution (5) into 
two independent integral equations for the even and odd 
functions, respectively,

/ OO
dr] K(g,r])[qs(g) -  q ^ ) ] ,

-OO
(7)

£ V T e =  Teil q a( i )

d r ) K ( g , r ] ) [ qfl( f )  -  7̂ ( 17)] . (8)

Here r eil =  w ei p p m / 2 w 2 is the electron-impurity colli
sion rate, and the kernel function is given by

K(£, v)  =
m3weeT;  (e * +  1 ) (7 7  -  f )

2 tt4 (e ^ + \ ) { e v  £ — 1) "

To derive the last terms in Eqs. (7) and (8) one has to per
form integrations in the collision integral (3) with respect 
to the angle and energy variables (see Ref. [22] for details). 
The solution of Eq. (7) is simply given by the constant,

q5(f) =  - e r eiE . (9)
The independence of this solution of the details of e-e  
interaction reflects the fact that the electric conductivity 
in the absence of umklapp processes is determined only 
by the impurity scattering.

The exact solution of Eq. (8) is much more complicated 
and can be obtained by the method of Ref. [23], by which 
the thermal conductivity of a clean Fermi liquid was found. 
The brief outline of the method is as follows. By making 
the Fourier transform of the integral equation (8) one gets 
an inhomogeneous second-order differential equation for 
the function g (k) =  / d £  e ~ ,k£qa( g ) / ( t t  cosh[f /2]),

d^g
d k 2 3coslr[Vfc] 7  g

o • 4 30/ tt pp
m 3w eeTe 

sinh[Vfc]
X

coslr[Vfc]
v r ej

(10)
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where the parameter y of the relative strength of e-e  
interaction is introduced, y =  1 + Air2/{Tejmi weeT 2). 
The function g(k) is found by using the expansion 
over the eigenfunctions of the homogeneous equa
tion (10), namely over the Jacobi polynomials g n =
^%/r/2\ / l  -  ^ p „ '   ̂ \ l  -  2£), with £ =  1 /cosh2[7j-fc]. 
For the thermal conductivity, defined as usual as

/c v r , =  — Pf

/ :3m tt

we get the following expression:

d i  - j f  g ( l a ( g )  ■ 
dt; (11)

«(Te) =
7 3 TT-pp

v ee.T'e

2A„ 1/2
3 m 4w

r 2(A„)F(A,
X

A„(2A„ + 1) -  1/3
i + y y /2 ) r ( »  + 3/2)

r 2(A„ + 3/2)r(A„ + 1/2 + V r/2)«!
(12)

where A„ =  rt + , /y /2  + 1/2, and F(.r) is the Gamma 
function. When the concentration of impurities decreases, 
y —» 1, the thermal conductivity (12) approaches the 
known expression of the clean limit [23], while in the 
case of weak e-e  scattering, y —> °°, the conventional 
Wiedemann-Franz law [10] is recovered,

* A =  0.78, y —» 1,

9m
The general expression (12) is the complicated function 
of temperature. In what follows, we will use the simple 
interpolation formula built upon the asymptotic properties 
(13):

ko(T£)«(Te) =

where the ratio of the e-e and electron-impurity scat
tering rates is defined as f3(Te) =  Tej /Tee(Je) = 
r ejrn3w eeT 2/ 3 A i r 2. Figure 1 demonstrates excellent 
agreement of this interpolation formula with the exact 
dependence (12).

Substituting Eqs. (9) and (14) into the energy balance 
equation (6), we obtain the equation for the electron tem
perature profile,

d_
dx

dTe
1 + p ( T e) dx

---- ^ ( e E ) \  (15)
73“

We assume that a conductor of length L is in a contact 
with two reservoirs at equilibrium with zero temperature 
Te( ± L / 2) =  0. The solution of Eq. (15) gives the effec
tive temperature profile inside the conductor,

Te(x) -
e V exp 3p(eV)

4 tt2
I -

4*2

L 2
-  I

(16)

To get the expression for the shot noise power it is suffi
cient to note that locally (at any given point x) the princi
pal term in the electronic distribution (5) is equilibriumlike

FIG. 1. Deviation of the thermal conductivity (12) from the 
Wiedemann-Franz law plotted versus /3(Te) =  Tei/ T ee(Te). The 
dashed line shows the approximation by the interpolation for
mula (14).

and, therefore, the noise is of the Johnson-Nyquist thermal 
type [4,5]. The noise power is then given by the averaging 
of the thermal noise over the length of the conductor [24],

S =
4G
L I

L/2

-L/2
dx Te(x ) . (17)

Substituting Eq. (16) into the expression (17) we get the 
shot noise power,

5 =  2 e l F ( V ) , (18)

where the so-called Fano factor (noise suppression factor) 
is voltage dependent and given by the integral

■ l
(M) F ( v )  = JJo

dz. exp
3f3(eV)

4 tt2 (1 -  z2) -  1. 

(19)

Figure 2 shows the Fano factor as a function of the e-e 
collision rate.

The shot noise of (18) and (19) is not universal as it 
depends nonlinearly on the applied voltage. It also be
comes sensitive to the geometry of the conductor. The 
most striking feature of Fig. 2 is the monotonous increase 
of the shot noise power up to and above its Poissonian 
value F =  1. This is different from the prediction, F <  1, 
of the quantum linear statistic theory of the shot noise 
[25,26]. This is due to the fact that the linear statistic 
theory does not include effects of inelastic scattering. It 
is understood, however, that in order to observe super- 
Poissonian values, very strict conditions should be satis
fied ( eV  /  jJif-pplei ~  102, making it difficult to achieve 
such a regime. From the experimental point of view, lower 
values of f3{eV)  < 10 are of more interest, at which case 
e-e  interaction contributes a correction to the \/3/4 noise 
power, F =  \/3/4[l + 9f 3(eV) /6 4 i r2\  The main reason 
why the shot noise power becomes nonlinear under strong 
e-e  scattering while the conductance stays Ohmic is due to 
the fact that e-e interaction conserves the net momentum
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FIG. 2. The Fano factor dependence on the effective ratio of 
the e-e and electron-impurity scattering /3(eV) at voltage V. The 
Fano factor starts with a s/3/4  value for weak e-e scattering and 
increases monotonously with its strength.

of particles and therefore does not affect the average cur
rent but does  affect the dissipative energy flow that turns 
out to be important for current fluctuations.

The calculation presented here essentially assumes that 
the interference between e -e  and impurity scattering [27] 
is negligible. This is true for sufficiently high effective 
electron temperatures (i.e., for high voltages), Te »  r j / 1 
[28]. In order to observe effects discussed in this paper 
the mesoscopic conductor has to be prepared sufficiently 
clean to make the ratio f 3(eV)  as large as possible.

To summarize, we presented here a situation where the 
universality of shot noise is removed by a sufficiently 
strong e-e interaction and finite voltages. The consid
eration based on the Boltzmann equation and restricted 
to the three-dimensional case is given. However, a fully 
microscopic theory for the shot noise in a strongly inter
acting system theory is needed, especially for low dimen
sional systems. As to do this is usually not an easy task, 
the Monte Carlo simulations could provide helpful insights 
into the problem.
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