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Shot Noise by Quantum Scattering in Chaotic Cavities
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We have experimentally studied shot noise of chaotic cavities defined by two quantum point contacts
in series. The cavity noise is determined as �1�4�2ejIj in agreement with theory and can be well dis-
tinguished from other contributions to noise generated at the contacts. Subsequently, we have found
that cavity noise decreases if one of the contacts is further opened and reaches nearly zero for a highly
asymmetric cavity. Heating inside the cavity due to electron-electron interaction can slightly enhance
the noise of large cavities and is also discussed quantitatively.
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The nonequilibrium time dependent fluctuations of the
electrical current, known as shot noise, are caused by
the randomness of charge transfer in units of e [1]. If
the electron transfer can be described by a Poissonian
process, the spectral density S of the current fluctuations
is SPoisson � 2ejIj. Correlations imposed by fermionic
statistics as well as Coulomb interaction may change shot
noise from SPoisson. This is expressed by the Fano factor
F defined as F � S�SPoisson. A quantum wire with an
intermediate barrier with energy-independent transmission
probability G, G � 1�2, for example, has a Fano factor of
1 2 G � 1�2 [2,3]. This suppression is due to binominal
instead of Poissonian statistics. Here, we explore what
happens if the barrier is replaced by a chaotic cavity
[Fig. 1, inset (a)]. For a symmetric and open cavity,
which is a cavity connected to ideal reservoirs via two
identical noiseless (barrier-free) quantum wires, the mean
transmission probability is 1�2, too. But surprisingly,
the Fano factor is predicted to be only 1�4 [4,5]. The
1�4 Fano factor, valid for open and symmetric chaotic
cavities, was first derived by random matrix theory, which
is based on phase-coherent quantum mechanical transport
[4]. Recently, a semiclassical analysis using the “principle
of minimal correlations” arrived at the same result [5].

Similar to metallic diffusive wires, where F � 1�3
[6–8], the Fano factor 1�4 for chaotic cavity is universal
in the sense that it is insensitive to microscopic properties
[4,5,9,10]. Nevertheless, there is an important difference
between these two systems concerning the origin of
resistance and noise. In a diffusive conductor resistance
and shot noise are both generated locally at scattering
centers, which are homogeneously distributed along the
wire. In an open chaotic cavity resistance and shot noise
are generated differently. The resistance is due to the
fundamental quantum resistance of the contacts. Although
the source of resistance, the open contacts do not con-
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tribute to noise because electrons are transmitted with
unit probability. Shot noise arises inside the cavity due to
quantum mechanical diffraction which splits the electron
wave packet into two partial waves leaving the two exits.
In the semiclassical approach cavity noise is determined
by the average fluctuations of the state occupancy inside
the cavity given, at T � 0, by [5]

S � 2G
Z

dE fC�1 2 fC� . (1)

Here fC�E� denotes the distribution function inside the
cavity, which is homogeneous and isotropic. The total con-
ductance G � G0�NLNR���NL 1 NR� with G0 � 2e2�h
is equal to the series conductance of the left and right

FIG. 1. Scanning electron microscope picture of a Hall bar
with three QPCs in series used to define chaotic cavities of dif-
ferent size. (a) The ratio of the number of modes h � NL�NR �
GL�GR can be adjusted by varying the openings of the left and
right contacts, independently. (b) QPC conductance vs gate volt-
age of one of the contacts.
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contacts with NL (NR) open channels (i.e., G1,...,NL,R � 1,
G.NL,R � 0). For noninteracting electrons the distribution
function in the cavity fC just equals the weighted aver-
age of the distribution functions fL and fR in the left
and right reservoirs. In the symmetric case NL � NR ,
i.e., fC � 1

2 � fL 1 fR�, Eq. (1) yields a Fano factor of
1�4. For very asymmetric contacts (NL ¿ NR) shot noise
approaches zero, since the system can then be regarded
as a single contact with NR open and therefore noiseless
channels. The general Fano factor F � S�2ejIj for cavity
noise is

F�h� �
NLNR

�NL 1 NR�2 �
h

�1 1 h�2 , (2)

where we introduce the parameter h � NL�NR measuring
the symmetry of the cavity.

Experimentally, we have realized chaotic cavities by
two quantum point contacts (QPC) in series. These are
electrostatically defined in a two dimensional electron gas
(2DEG) by metallic split gates on top (see Fig. 1) [11].
The opening of the contacts can be individually tuned
by varying the applied gate voltages independently. The
2DEG forms 80 nm below the surface at the interface of a
standard GaAs�Al0.3Ga0.7As heterojunction. Magnetore-
sistance measurements yield a carrier density of 2.7 3

1015 m22, corresponding to a Fermi energy of �106 K and
a mobility of 83 V s�m22 resulting in a mean free path of
�7 mm comparable to the size of the cavity. Three QPCs
in series as shown in Fig. 1 enable one to define two cavi-
ties of different size: either the outer gates A and C with the
middle gate B kept completely open can be used to define a
relatively large cavity of �11 3 8 mm or two of the inner
gates (A,B or B,C) create a smaller cavity of �5 3 8 mm.
The conductance of the QPCs is quantized according to the
Landauer formula G � G0

P
n Gn [12] [inset (b) of Fig. 1].

An open cavity is defined when both QPCs are adjusted to
a conductance plateau, where N modes are fully transmit-
ted (G � 1) and the others are totally reflected (G � 0).
Since the gates do not influence each other, the transmis-
sion of both contacts can be determined independently by
completely opening one of them while the conductance of
the other is measured. The two-terminal conductance G
is experimentally found to correspond to the series con-
ductance of the two contacts GLGR��GL 1 GR� with an
accuracy of less than 1% [4,5]. Therefore, direct transmis-
sion of electrons from the left to the right contact can be
excluded, as well as quantum corrections [13,14].

Two independent low-noise amplifiers (EG&G 5184)
operating at room temperature are used to detect the volt-
age fluctuations across the cavity. A spectrum analyzer
(HP 89410A) calculates the cross-correlation spectrum of
the two amplified signals. This technique allows one to re-
duce uncorrelated noise contributions which do not origi-
nate from the sample itself. Experimental details can be
found in [8,15]. Furthermore, the whole setup is filtered
against RF interference at low temperatures by a shielded
sample box and lossy microcoaxes to minimize heating
by radiation. Voltage noise is typically measured at fre-
quencies around 6 kHz where the noise is frequency inde-
pendent (white) up to the maximum bias current #50 nA
used in the experiment. The sensitivity for voltage noise
measurements is of the order 5 3 10221 V2 s. The mea-
sured noise is calibrated against equilibrium Nyquist noise
at different bath temperatures. From the Nyquist relation
SV � 4kBRT the voltage gain as well as the offset in the
voltage noise Soff

I R2 caused by the finite current noise
Soff

I of the amplifiers can be determined with high accu-
racy. Although shot noise is a nonequilibrium phenome-
non observed in its purest form in the limit eV ¿ kBT ,
in this experiment bias voltages are limited to �8kBT�e,
only. This is to avoid nonlinearities of the current-voltage
characteristics of the QPCs [16] and 1�f-noise contribu-
tions occurring at larger currents [15]. Within this limit,
the differential resistance, recorded for all noise measure-
ments, changes by &2.5%. The current noise is finally
obtained from the measured voltage fluctuations by SI �
SV ��dV�dI�2 2 Soff

I .
Figure 2 shows shot noise measurements of a cavity

defined by gates A and B with a size of �5 3 8 mm for
different symmetry parameters h � GL�GR . The solid
curves describe the crossover from thermal to shot noise
for the measured value of h given by [5]

S � Seq

Ω
1 1 F�h�

∑
eV

2kBT
coth

µ
eV

2kBT

∂
2 1

∏æ
. (3)
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FIG. 2. Shot noise of a chaotic cavity with ideal con-
tacts (GL,R�G0 � integer) for different conductance ratios
h � GL�GR . The data for h � 1.0, 2.7, and 6.2 are offset for
clarity by 20, 15, and 5 3 10228 A2 s, respectively. Inset: Shot
noise is larger than �1�4�2ejIj if there is additional partitioning
due to nonideal contacts (GL,R�G0 fi integer). The curves are
numerical calculations assuming no mode mixing (dotted line)
and for slight mode mixing of 10% (solid line).
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Seq � 4kBTG denotes the equilibrium noise and F�h� the
Fano factor [Eq. (2)]. In the symmetric case (h � 1)
with NL � NR � 5 we obtain a very good agreement
between the experimental data and the theoretical pre-
diction of �1�4�2ejIj. When the right contact is further
opened (GR . GL), h increases from 1 (symmetric) to
�41 (asymmetric). Thereby, shot noise gradually disap-
pears for larger values of h as expected from Eq. (2). For
partial transmission in the contacts shot noise is larger than
�1�4�2ejIj because additional noise is generated at the con-
tacts. This is shown in the inset of Fig. 2 where the con-
ductance of each point contact equals 1.16G0. The dotted
curve is a numerical calculation for no mode mixing. The
data are approximated the best assuming slight mode mix-
ing of �10% (solid line) with G1 � 0.90 and G2 � 0.26.

Up to now we have assumed that inelastic electron scat-
tering inside the cavity can be neglected. In general, heat-
ing caused by electron-electron interaction enhances shot
noise [1]. The Fano factor of a diffusive wire, for example,
changes from 1�3 for noninteracting (cold) electrons top

3�4 for interacting (hot) electrons [17]. Heating also af-
fects the shot noise of a chaotic cavity. The Fano factor is
modified to [18]

F�h� �

p
3NLNR

p�NL 1 NR�
�

p
3h

p�1 1 h�
, (4)

and the crossover from thermal to shot noise is described
by

S �
Seq

2

(
1 1

s
1 1 F�h�2

µ
eV
kBT

∂2
)

. (5)

For a symmetric cavity F�h � 1� � 0.276 for hot elec-
trons, which is only slightly larger than F�h � 1� � 0.25
for cold electrons. The inset of Fig. 3 compares
S�eV�kBT � in the hot and cold electron regime for a
diffusive wire and a cavity. As is evident, the differences
are very small, in particular, in case of a cavity where
even a crossing at eV�kBT � 15 occurs. In Fig. 3 the
measured noise for h � 1 of Fig. 2 is replotted and
compared to the prediction for cold (solid line) and for
hot electrons (dashed line). Although the data points lie
clearly closer to the prediction for cold electrons, this
alone is not sufficient to decide which regime is realized
in the cavity, because of the finite experimental accuracy.
An additional criterion is needed.

In order to decide whether the cold or hot electron theory
is appropriate for the comparison with the measurements,
the electron-electron scattering time tee is compared with
the dwell time for electrons inside the cavity. We argue that
thermalization is present if tD ¿ tee. The average dwell
time is the product of the ballistic flight time across the cav-
ity tF � L�yF with the number of scattering events inside
the cavity given by the ratio of the cavity size L and the
width of the contacts W � WL 1 WR � lF

2 �NL 1 NR�:
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FIG. 3. Shot noise of a symmetric cavity and theoretical pre-
dictions for cold (solid line) and hot electrons (dashed line).
Inset: comparison of the noise of a chaotic cavity (1�4 andp

3�2p) with a diffusive wire (1�3 and
p

3�4) for cold and hot
electrons.

tD �
2p h̄
EF

µ
L
lF

∂2 1
�NL 1 NR�

. (6)

The electron-electron scattering rate t21
ee in a two dimen-

sional electron system is given by [19]

t21
ee �

EF

2p h̄

µ
kBTe

EF

∂2 ∑
ln

µ
EF

kBTe

∂
1 ln

µ
2q
kF

∂
1 1

∏
(7)

with the Thomas-Fermi screening wave vector
q � 2me2�ere0h̄2. Because the system is out of equilib-
rium the temperature Te in Eq. (7) has to be replaced by
the effective electron temperature Teff given by Teff �
�1�kB�

R
defC�1 2 fC� [20]. The ratio tD�tee is plotted

in the inset of Fig. 4 as a function of h � GL�GR for the
two different types of cavities taking tee from Eq. (7) for
Teff corresponding to the largest applied voltage V in the
experiment. The upper curve belongs to the large cavity
(�11 3 8 mm), where the right contact is nearly closed
(GR fixed to G0). In this case, tD ¿ tee. The lower
curve corresponds to the smaller cavity (�5 3 8 mm)
with a 5 times larger opening of the right contact. For this
type of cavity we find tD , tee.

According to this argument we use Eq. (5) valid for hot
electrons to fit the noise data obtained for chaotic cavities
with tD�tee . 1. The Fano factor F is the only fitting pa-
rameter. On the other hand, we use Eq. (3) valid for cold
electrons if tD�tee , 1. The Fano factors F � S�2ejIj
obtained according to this procedure are plotted as a func-
tion of the measured h for the two different cavities de-
scribed above. For the solid squares, which belong to
the large cavity with nearly closed contacts (large dwell
time), we find good agreement with the theoretical Fano
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FIG. 4. Fano factor F � S�2ejIj vs the symmetry parameter
h for (open circles) a small cavity with widely opened contacts
(tD , tee) and for (solid squares) a large cavity with nearly
closed contacts (tD ¿ tee). Predictions for cold electrons (solid
line) and hot electrons (dashed line). Inset: tD�tee vs h for the
two different types of cavity.

factor for hot electrons given by Eq. (4) (dashed line). The
open circles are results for the small cavity with wider
opened contacts (small dwell time) which are consistent
with the prediction for noninteracting electrons described
by Eq. (2). If we use the formula for cold electrons in-
stead of the one for hot electrons to fit the data obtained
for the larger cavity, the solid squares move only slightly
downwards by �0.02 0.03. They still lie clearly above the
open circles, demonstrating that heating is indeed impor-
tant for the larger cavity. Good agreement between theory
and experiment is found for both regimes with the excep-
tion of very asymmetric contacts, i.e., h ¿ 1. Here we
attribute the deviations to slight mode mixing within the
QPCs, which is difficult to avoid [15]. Let us assume,
as an example for the data point at h � 180, that two
modes instead of one participate in the left contact trans-
mitting, respectively, with G1 � 0.97 and G2 � 0.03 in-
stead of G1 � 1.00 and G2 � 0. This yields a Fano factor
of �0.06 in agreement to what is experimentally observed.

In conclusion, we have experimentally studied shot
noise of open chaotic cavities defined by two QPCs in
series. In the regime of noninteracting electrons a Fano
factor F � S�2ejIj of 1�4 has been measured as theoreti-
cally predicted for symmetric cavities. The origin of this
shot noise is partitioning of the electron wave function
by quantum mechanical diffraction inside the cavity. The
contacts themselves, which actually define the resistance
of the system, do not contribute to noise. In addition,
we have also investigated heating effects due to inelastic
electron-electron scattering by changing the opening of
the contacts as well as the size of the cavity. Similar to
other mesoscopic systems heating increases shot noise in
agreement with theory. Shot noise in chaotic cavities is a
purely quantum phenomenon. It would be interesting to
study the crossover from “quantum chaos” to “classical
chaos,” where shot noise is predicted to be absent [21].
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