45 research outputs found

    Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2

    Get PDF
    Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis

    Galactose protects against cell damage in mouse models of acute pancreatitis

    Get PDF
    Acute pancreatitis (AP), a human disease in which the pancreas digests itself, has substantial mortality with no specific therapy. The major causes of AP are alcohol abuse and gallstone complications, but it also occurs as an important side effect of the standard asparaginase-based therapy for childhood acute lymphoblastic leukemia. Previous investigations into the mechanisms underlying pancreatic acinar cell death induced by alcohol metabolites, bile acids, or asparaginase indicated that loss of intracellular ATP generation is an important factor. We now report that, in isolated mouse pancreatic acinar cells or cell clusters, removal of extracellular glucose had little effect on this ATP loss, suggesting that glucose metabolism was severely inhibited under these conditions. Surprisingly, we show that replacing glucose with galactose prevented or markedly reduced the loss of ATP and any subsequent necrosis. Addition of pyruvate had a similar protective effect. We also studied the effect of galactose in vivo in mouse models of AP induced either by a combination of fatty acids and ethanol or asparaginase. In both cases, galactose markedly reduced acinar necrosis and inflammation. Based on these data, we suggest that galactose feeding may be used to protect against AP

    Identification of a c-MYB-directed therapeutic for acute myeloid leukemia

    Get PDF
    A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy

    Can I go home now? : The safety and efficacy of a new UK paediatric febrile neutropenia protocol for risk-stratified early discharge on oral antibiotics

    Get PDF
    OBJECTIVE: To evaluate a new protocol of risk stratification and early discharge for children with febrile neutropenia (FN). DESIGN: Prospective service evaluation from 17 April 2020 to 16 April 2021. SETTING: 13 specialist centres in the UK. PATIENTS: 405 children presenting with FN. INTERVENTION: All children received intravenous antibiotics at presentation. Risk stratification was determined using the Australian-UK-Swiss (AUS) rule and eligibility for homecare assessed using criteria including disease, chemotherapy, presenting features and social factors. Those eligible for homecare could be discharged on oral antibiotics after a period of observation proportional to their risk group. MAIN OUTCOME MEASURES: Median duration of admission and of intravenous antibiotics, and percentage of patients with positive blood cultures, significant infection, readmission within 7 days of initial presentation, intensive care unit (ICU) admission, death from infection and death from other causes. RESULTS: 13 centres contributed 729 initial presentations of 405 patients. AUS rule scores were positively correlated with positive blood cultures, significant infection, ICU admission and death. 20% of children were eligible for homecare with oral antibiotics, of which 55% were low risk (AUS 0-1). 46% low-risk homecare eligible patients were discharged by 24 hours vs 2% homecare ineligible. Homecare readmission rates were 14% overall and 16% for low-risk cases (similar to a meta-analysis of previous studies). No child eligible for homecare was admitted to ICU or died. CONCLUSIONS: Use of the AUS rule and homecare criteria allow for safe early outpatient management of children with FN

    Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia

    Get PDF
    Publisher Copyright: © 2021 Lippincott Williams and Wilkins. All rights reserved.Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP aged 1.0 to 17.9 y) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.Peer reviewe

    Benefits for children with suspected cancer from routine whole-genome sequencing

    Get PDF
    Clinical whole-genome sequencing (WGS) has been shown to deliver potential benefits to children with cancer and to alter treatment in high-risk patient groups. It remains unknown whether offering WGS to every child with suspected cancer can change patient management. We collected WGS variant calls and clinical and diagnostic information from 281 children (282 tumors) across two English units (n = 152 from a hematology center, n = 130 from a solid tumor center) where WGS had become a routine test. Our key finding was that variants uniquely attributable to WGS changed the management in ~7% (20 out of 282) of cases while providing additional disease-relevant findings, beyond standard-of-care molecular tests, in 108 instances for 83 (29%) cases. Furthermore, WGS faithfully reproduced every standard-of-care molecular test (n = 738) and revealed several previously unknown genomic features of childhood tumors. We show that WGS can be delivered as part of routine clinical care to children with suspected cancer and can change clinical management by delivering unexpected genomic insights. Our experience portrays WGS as a clinically impactful assay for routine practice, providing opportunities for assay consolidation and for delivery of molecularly informed patient care.</p

    Trypsin encoding PRSS1-PRSS2 variation influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report

    Get PDF
    Asparaginase-associated pancreatitis is a life-threatening toxicity to childhood acute lymphoblastic leukemia treatment. To elucidate genetic predisposition and asparaginase-associated pancreatitis pathogenesis, ten trial groups contributed remission samples from patients aged 1.0−17.9 years treated for acute lymphoblastic leukemia between 2000 and 2016. Cases (n=244) were defined by the presence of at least two of the following criteria: (i) abdominal pain; (ii) levels of pancreatic enzymes ≥3 × upper normal limit; and (iii) imaging compatible with pancreatitis. Controls (n=1320) completed intended asparaginase therapy, with 78% receiving ≥8 injections of pegylated-asparaginase, without developing asparaginase-associated pancreatitis. rs62228256 on 20q13.2 showed the strongest association with the development of asparaginase-associated pancreatitis (odds ratio=3.75; P=5.2×10−8). Moreover, rs13228878 (OR=0.61; P=7.1×10−6) and rs10273639 (OR=0.62; P=1.1×10−5) on 7q34 showed significant association with the risk of asparaginase-associated pancreatitis. A Dana Farber Cancer Institute ALL Consortium cohort consisting of patients treated on protocols between 1987 and 2004 (controls=285, cases=33), and the Children’s Oncology Group AALL0232 cohort (controls=2653, cases=76) were available as replication cohorts for the 20q13.2 and 7q34 variants, respectively. While rs62228256 was not validated as a risk factor (P=0.77), both rs13228878 (P=0.03) and rs10273639 (P=0.04) were. rs13228878 and rs10273639 are in high linkage disequilibrium (r2=0.94) and associated with elevated expression of the PRSS1 gene, which encodes for trypsinogen, and are known risk variants for alcohol-associated and sporadic pancreatitis in adults. Intra-pancreatic trypsinogen cleavage to proteolytic trypsin induces autodigestion and pancreatitis. In conclusion, this study finds a shared genetic predisposition between asparaginase-associated pancreatitis and non-asparaginase-associated pancreatitis, and targeting the trypsinogen activation pathway may enable identification of effective interventions for asparaginase-associated pancreatitis
    corecore