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Rachita Yadav, PhD,¶ Ester Zapotocka, MD, PhD,∥∥∥

Kjeld Schmiegelow, MD, PhD,‡¶¶¶ and Ramneek Gupta, PhD*

Summary: Asparaginase-associated pancreatitis (AAP) frequently
affects children treated for acute lymphoblastic leukemia (ALL) causing
severe acute and persisting complications. Known risk factors such as
asparaginase dosing, older age and single nucleotide polymorphisms
(SNPs) have insufficient odds ratios to allow personalized asparaginase
therapy. In this study, we explored machine learning strategies for pre-
diction of individual AAP risk. We integrated information on age, sex,
and SNPs based on Illumina Omni2.5exome-8 arrays of patients with
childhood ALL (N=1564, 244 with AAP 1.0 to 17.9 yo) from 10

international ALL consortia into machine learning models including
regression, random forest, AdaBoost and artificial neural networks. A
model with only age and sex had area under the receiver operating
characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis
candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-
AUC somewhat (0.67) while 30 SNPs, identified through our AAP
genome-wide association study cohort, boosted performance (0.80).
Most predictive features included rs10273639 (PRSS1-PRSS2),
rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495
(GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP
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following asparaginase re-exposure was predicted with ROC-AUC:
0.65. The machine learning models assist individual-level risk assessment
of AAP for future prevention trials, and may legitimize asparaginase re-
exposure when AAP risk is predicted to be low.

Key Words: pediatric hematology/oncology, acute lymphoblastic leu-
kemia, treatment toxicity, translational research, artificial intelligence

(J Pediatr Hematol Oncol 2022;44:e628–e636)

A sparaginase is an essential drug in childhood acute lym-
phoblastic leukemia (ALL) treatment associated with

increased survival rates.1 By depleting circulating asparagine
levels, malignant lymphoblasts are targeted for apoptosis, due
to limited capacity for resynthesis of asparagine.2 Aspar-
aginase use is, however, associated with significant treatment
related toxicities3 of which pancreatitis (asparaginase-asso-
ciated pancreatitis [AAP]) occurs in 2% to 18% of patients,4

mostly in older children and adults.5 Frequently, AAP leads to
truncation of therapy, potentially increasing the risk of
relapse.1,6,7 Re-exposure to asparaginase after AAP has been
associated with an almost 50% risk for a second AAP, but only
after several doses of pegylated asparaginase (PegAsp).8 Pre-
vious studies have identified older age at diagnosis,4,5 and host
genome variants4,9,10 as AAP risk factors. However, these risk
factors are currently not used to individualize treatment with
asparaginase, as they only have modest effect sizes for clinical
decision support. The study demonstrates how far machine
learning methodologies can guide identification of AAP risk
patients in childhood ALL.

MATERIALS AND METHODS
To address this challenge, we integrated germline single

nucleotide polymorphisms (SNPs) from a childhood ALL AAP
case-control cohort (N=1564, including 244 AAP cases) into
machine learning models to predict patients at very high risk of
AAP and low risk of second AAP. We and others have pre-
viously applied machine learning modeling to identify patients
with childhood ALL at high risk of relapse.11,12 Individual level
predictions across several machine learning models can be
compared with improve understanding of relevant risk factors
that appear in combination associated with AAP, and potential
patient subgroups that are predictable by separate models. By
identifying patients at high confidence for risk of AAP guided
by the individual probabilities provided by the machine learning
models, this analysis may facilitate research on targeted pre-
emptive measures (eg, somatostatin) for patients at high risk of
AAP. We also tested if the use of AAP SNP machine learning
models performed equally well for predicting the risk of devel-
oping a second AAP following re-exposure to asparaginase. The
need for identification of low-risk patients who are likely to
tolerate re-exposure to PegAsp after their first AAP episode are
even more important for avoiding the risk of relapse by guiding
decision on whether patients are safe to re-expose after their first
AAP given germline predisposition.

Patients
To map AAP phenotypes and identify significant host

genome variants associated with AAP risk, the international
Ponte di Legno (PdL) toxicity working group (PTWG) col-
lected post remission blood samples from 1564 children (1.0 to
17.9 yo) with newly diagnosed t(9;22)-negative ALL between
June 1, 1996, and January 1, 2016.10 Oral and written consent
was obtained. The database containing phenotype data was

approved by the regional ethical review board of The Capital
Region of Denmark (H-2-2010-022), the Danish Data Pro-
tection Authorities (j.nr.: 2012-58-0004), and by relevant reg-
ulatory authorities in all participating countries.

All patients received asparaginase according to their
respective treatment protocols. Patients treated by the Nordic
Society of Pediatric Hematology and Oncology (NOPHO)
ALL-2008 treatment protocol (92 AAP cases and 1024 con-
trols) received 30 weeks of asparaginase exposure with pegy-
lated asparaginase at 2 weeks intervals (15 doses in total),
although a subset were randomized to pegylated asparaginase
at 6 weeks intervals after the first 5 doses (8 doses in total).13

Patients treated by other protocols received asparaginase for
<30 weeks. The applied diagnostic criteria for AAP stated that
2 of the 3 following international consensus criteria must be
fulfilled: (i) amylase, pancreatic amylase, or pancreatic lipase
> 3× upper normal limit, (ii) abdominal pain, or (iii) imaging
compatible with AAP.14 DNA was genotyped on Illumina
Omni2.5exome-8 BeadChip arrays. After quality control as
previously described,10 the genotype data consisted of
1,401,908 SNPs. Information on age and sex was available for
all patients while patients treated with the NOPHO ALL-2008
protocol had more clinical features available including coun-
try, weight, length, immunophenotype, risk stratification
group, white blood cell count at diagnosis, minimal residual
disease (measured with flow cytometry and polymerase chain
reaction at day 29) and asparaginase dosage information
(dosage interval [2 or 6wk intervals] and total number of
asparaginase dosages) (Supplementary Methods S1, Supple-
mental Digital Content 1, http://links.lww.com/JPHO/A474).

Machine Learning Training, Feature Importance,
and Validation

Logistic regression, random forest, AdaBoost, and arti-
ficial neural networks (including 1 and 2 hidden layers) models
were fitted using python (version 3.6.8)15 with Scikit-learn
(version 0.21.3).16 Several multivariate machine learning
models were trained to capture both linear and nonlinear
interactions between genetic features. Feature importance was
evaluated by the area under the receiver operating character-
istic curve (ROC-AUC) loss using a “leave-one-out” approach
on correlated features. To eliminate population substructure,
only patients of European ancestry were included for training
of the machine learning models in the study (N=1390)
whereof 205 patients developed AAP and 1185 did not. Per-
formance was evaluated in 2 independent hold-out validation
data sets that was stratified according to patients’ genetic
ancestry. A hold-out validation data set with European
ancestry included 100 patients (50 AAP cases) that included all
the 37 patients re-exposed to asparaginase after truncation
extracted before training of the machine learning models
leaving 1290 patients for model training (155 AAP cases). The
second hold-out validation data set included 174 patients (39
AAP cases) with a non-European genetic ancestry. Perform-
ance was also evaluated on the 37 re-exposed patients to
evaluate the predictive performance on a second AAP (13
cases) (Supplementary Methods S1, Supplemental Digital
Content 1, http://links.lww.com/JPHO/A474).

Genetic Feature Representation and Selection
Strategies

To maximize learning from genetic data, SNPs were
represented by additive, dominant and recessive genetic
encodings as well as a nonadditive genetic encoding according
to the presence of the major allele or minor allele (binary allele)
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in the machine learning models. To guide training of the
models, SNPs were selected by different strategies to test their
predictiveness of AAP (Fig. 1). Feature selection included
SNPs previously associated with pancreatitis17–19 or AAP.4,9,10

rs13228878 (PRSS1/PRSS2) was previously validated in the
Children’s Oncology Group’s AALL0232 cohort,10 while
rs10273639 (PRSS1-PRSS2), rs17107315 (SPINK1) and
rs12688220 (CLDN2/MORC4) have been identified and

FIGURE 1. Overview of the feature selection and machine learning strategies used in the study. *A future model would benefit from
inclusion of the cumulative dosage of pegylated asparaginase (PegAsp). In this study, it was only available on a subset of patients and was
thus not fully explored. Age and sex were always included in modeling. AAP indicates asparaginase-associated pancreatitis; SNP, single
nucleotide polymorphism.

FIGURE 2. Leave-one-out area under the receiver operating characteristic curve (ROC-AUC) feature importance for asparaginase-asso-
ciated pancreatitis risk models. Models were trained on N=1290 patients using artificial neural networks with 1 hidden layer (A) using
age, sex and 6 candidate single nucleotide polymorphisms (SNPs) as features. B, Using age, sex and 4 previously validated SNPs as
features. C, Using age, sex and top 30 SNPs associated with asparaginase-associated pancreatitis from Wolthers et al10 genome-wide
association study as features.

Nielsen et al J Pediatr Hematol Oncol � Volume 44, Number 3, April 2022
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validated in alcoholic and nonalcoholic pancreatitis
studies.17–19 Recent AAP genome-wide association study
(GWAS) discovered shared genetic predisposition between AAP
and non-AAP pathways.10 We thus also explored predictability
using SNPs annotated to 8 candidate genes involved in devel-
opment of pancreatitis, that is, PRSS1, PRSS2, SPINK1,
CTRC, CASR, CFTR, CPA1, and CLDN220 and their expres-
sion quantitative trait loci (eQTLs) from the GTEx biobank
(v6)21,22 using prior knowledge on the most severe functional
SNPs consequences to subset data sets with prioritized SNPs for
modeling. SNPs annotated to the 8 candidate genes (with minor
allele frequency>5%) were in addition reduced to 3 principal
components to model the variance explained by all variants.
Furthermore, 6 SNPs; rs10436957 (CTRC), rs12853674
(CLDN2), rs13228878 (PRSS1/PRSS2), rs16832787 (CASR),
rs17107315 (SPINK1), and rs56296320 (CFTR) were identified as
most significant SNPs in candidate genes of pancreatitis20 in the
PdL AAP GWAS10 (Supplementary Methods S1, Supplemental
Digital Content 1, http://links.lww.com/JPHO/A474).

Ensemble Model
An ensemble of prediction models optimized for prediction

of AAP was created without increasing the complexity of any
individual model. The ensemble model was scored by 3 different
approaches (i) average mean scoring, (ii) majority voting or (iii)
average mean scoring of confident individual predictions, that is,
the score should be ≤0.30 or ≥0.70 to count in the final pre-
diction (Supplementary Methods S1, Supplemental Digital
Content 1, http://links.lww.com/JPHO/A474).

RESULTS

Clinical Baseline Model
The PdLAAP cohort included 1564 children whereof 1390

patients had European ancestry (205 AAP cases) that were
considered for training of the machine learning models. The
AAP cases (N=1390, 205 AAP cases) had older age (case:
8.7±4.8, controls: 6.3±4.5, P=1.4e−12) and no difference in
sex (P=0.82) (Supplementary Table S.2, Supplemental Digital
Content 1, http://links.lww.com/JPHO/A474). A genome-wide
association analysis on the patients with only European back-
ground (N=1390) is available in Supplementary Table S.3
(Supplemental Digital Content 1, http://links.lww.com/JPHO/
A474). No SNPs reached genome-wide significance. A clinical
baseline model of AAP was established using only age and sex
as features which resulted in ROC-AUCs of 0.62±0.01 (Sup-
plementary Table S.4, Supplemental Digital Content 1, http://
links.lww.com/JPHO/A474). SNPs were integrated to the clin-
ical baseline models using prior information of pancreatitis
pathways and SNPs or previous AAP studies to investigate how
predictive germline predisposition are of AAP.

Integration of Genetic Risk Variants
in Pancreatitis Pathways

Given the shared genetic predisposition between AAP and
pancreatitis,10 6 different data sets were used to test the pre-
dictiveness of SNPs annotated to 8 genes involved in pan-
creatitis pathways; PRSS1, PRSS2, SPINK1, CTRC, CASR,
CFTR, CPA1, and CLDN2 (Supplementary Methods S1,
Supplemental Digital Content 1, http://links.lww.com/JPHO/
A474: 6 data sets of SNPs annotated to 8 genes involved in
pancreatitis pathway). The predictive performance for models
with age, sex and the selected SNP data sets ranged with ROC-
AUC: 0.47 to 0.67 (Supplementary Table S.5, Supplemental
Digital Content 1, http://links.lww.com/JPHO/A474). Overall,

the best performance was achieved from the 6 candidate SNPs,
age and sex model with ROC-AUC: 0.67 (ROC curve in
Supplementary Fig. S.6A, Supplemental Digital Content 1,
http://links.lww.com/JPHO/A474). The performance was robust
across 100 model initializations compared with a permuted
outcome label of AAP with significantly higher ROC-AUC for
the true AAP models (P< <1e−6, Supplementary Fig. S.6B,
Supplemental Digital Content 1, http://links.lww.com/JPHO/
A474). The most predictive features were rs13228878 (PRSS1/
PRSS2), the minor allele of rs10436957 (CTRC) and the age
group of 1 to 7 years (Fig. 2A).

We also explored the impact of integration of previously
validated pancreatitis SNPs in studies of alcoholic and non-
alcoholic pancreatitis17–19 (Supplementary Methods S1, Supple-
mental Digital Content 1, http://links.lww.com/JPHO/A474: 4
data sets of SNPs previously associated with AAP or pancreatitis).
Integration of previously validated pancreatitis SNPs (rs13228878
(PRSS1/PRSS2), rs17107315 (SPINK1), rs10273639 (PRSS1/
PRSS2), rs12688220 (CLDN2/MORC4) resulted in ROC-AUC:
0.67 with age and sex (Table 1, ROC curve in Supplementary
Fig. S.6C, Supplemental Digital Content 1, http://links.lww.com/
JPHO/A474) where the ROC-AUC of the models was robust
across 100 model initializations compared with a permuted out-
come label of AAP with significantly higher ROC-AUC for the
true AAP models (P< <1e−6, Supplementary Fig. S.6D, Sup-
plemental Digital Content 1, http://links.lww.com/JPHO/A474).
The most important features were rs10273639 (PRSS1/PRSS2),
rs13228878 (PRSS1/PRSS2) and the age group of 1 to 7 years
(Fig. 2B).

Integration of AAP-associated Genetic Variants
Finally, SNPs previously associated with AAP were

obtained from 3 previous genetic studies by; Liu et al,4 Abaji
et al,9 and Wolthers et al.10 SNPs identified by Liu and col-
leagues and Abaji and colleagues did not change ROC-AUC
compared with the clinical baseline model (ROC-AUC: 0.60 to
0.63, Supplementary Table S5, Supplemental Digital Content 1,
http://links.lww.com/JPHO/A474). The top 30 AAP-associated
SNPs reported from an AAP GWAS by Wolthers and col-
leagues resulted in ROC-AUC: 0.80 (Table 1, ROC curve and
permutation test in Supplementary Figs. S.6E, F, Supplemental
Digital Content 1, http://links.lww.com/JPHO/A474). The per-
formance appeared to be independent of the type of machine
learning model used, as well as of additive, dominant or binary
allele encoding of the genetic variants. However, using the
recessive encoding of genetic features resulted in multiple near-
zero variance predictors due to very few homozygous recessive
alleles, and thus lower ROC-AUC: 0.67 to 0.70 (Supplementary
Table S.5, Supplemental Digital Content 1, http://links.lww.
com/JPHO/A474).

The most important features were the minor alleles of
rs1505495 (GALNTL6) and rs4655107 (EPHB2) (Fig. 2C).
We tested with a forward selection algorithm if age, sex,
rs1505495 and rs4655107 were just as predictive on their
own. Approximately 25 features were selected by the algo-
rithm supporting a combination of SNPs is required for
prediction of AAP (Supplementary Table S.7, Supplemental
Digital Content 1, http://links.lww.com/JPHO/A474). The
model was robust across 100 model initializations compared
with a permuted outcome label with significantly higher
ROC-AUC for the true AAP-labeled models (P< < 1e−6,
Supplementary Fig. S.6F, Supplemental Digital Content 1,
http://links.lww.com/JPHO/A474). This model was sig-
nificantly more confident in AAP patients with higher age
(6 y and above, mean [95% confidence interval] of individual
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risk of AAP: 0.74 [0.69 to 0.78]) compared with children
younger than 6 years (mean [95% confidence interval] of
individual risk of AAP: 0.58 [0.52 to 0.65], P= 0.0001).
Addition of 2 previously validated SNPs that were not part
of the 30 SNPs data set (rs12688220 and rs17107315) did not
improve the performance further (Supplementary Table S.7,
Supplemental Digital Content 1, http://links.lww.com/
JPHO/A474). As an attempt, we tried to redo the PTWG
GWAS within a 30% hold-out setup (Supplementary
Methods S1, Supplemental Digital Content 1, http://links.
lww.com/JPHO/A474). This however reduced ROC-AUC
to 0.59 (Supplementary Table S.7, Supplemental Digital
Content 1, http://links.lww.com/JPHO/A474).

Validation of Models
Data sets left out from the original training of the models

was used for validation of the AAP risk models in patients with a
European ancestry (N=100, 50 cases of AAP) or a non-
European ancestry (N=174, 39 cases of AAP) as well as vali-
dation of the ability to predict risk of second AAP (N=37, 13
cases of second AAP). The most successful models validated the

risk of AAP (Table 1). However, SNPs identified by Wolthers
and colleagues had reduced capability of predicting non-Euro-
pean patients (ROC-AUC: 0.72) as compared with European
patients (ROC-AUC: 0.84). The trained models predicted risk of
second AAP with reduced performance (ROC-AUC: 0.55 to
0.60). The most predictive SNPs from the models (rs13228878,
rs10436957, rs10273639, rs1505495, rs4655107) are summarized
in Table 2.

Personalized Artificial Intelligence (AI) Ensemble
Model

The most predictive models compared with the clinical
baseline model (ROC-AUC≥0.62) with different genetic
encoding and features capturing different subsets of patients were
integrated into an ensemble model based on sensitivity to
improve prediction in AAP cases. This ensemble model was
composed of 50 models capturing different individuals across
predictions across a total of 18,000 possible. For establishing a
joint prediction score on each patient, the scores of the individual
models within the ensemble were combined via (a) averaging, (b)
majority voting, and (c) averaging only on confident scores.

TABLE 1. ROC-AUC Performances Reported as Mean± SD for the Training Data Set (N=1290, 155 AAP Cases), Hold-out Validation Data
Set With N=100 Patients With European Ancestry (50 AAP Cases and Controls), Hold-out Validation With N=174 Patients With Non-
European Ancestry (39 AAP Cases) and a Subset of the 37 Patients With European Ancestry That Were Re-exposed to Asparaginase (13
AAP Cases) Across 100 Model Initializations in 5-fold Cross-validation

Data Type Model
ROC-AUC
(N= 1290)

ROC-AUC CEU
Validation (N= 100)

ROC-AUC Non-CEU
Validation (N= 174)

ROC-AUC Validation
2nd AAP (N= 37)

Six candidate
SNPs

ANN (1 hidden layer),
binary allele encoding

0.67± 0.01 0.64± 0.01 0.62±0.01 0.60± 0.01

Validated
pancreatitis
SNPs

ANN (1 hidden layer),
binary allele encoding

0.67± 0.01 0.64± 0.01 0.63±0.01 0.57± 0.01

Top 30 P-value
SNPs

ANN (1 hidden layer),
binary allele encoding

0.80± 0.01 0.84± 0.01 0.72±0.01 0.55± 0.04

All models are trained with down-sampling on the control group within the cross-validation folds.
AAP indicate asparaginase-associated pancreatitis; ANN, artificial neural network; CEU, Utah Residents (CEPH) with Northern and Western European

ancestry; ROC-AUC, area under the receiver operating characteristic curve; SNPs, single nucleotide polymorphisms.

TABLE 2. Overview of the Most Predictive AAP Single Nucleotide Polymorphisms

SNPs Chromosome Position

Minor Allele Frequency in
Training (N= 1290), CEU

Validation (N= 100),
Non-CEU Validation

(N= 174), Second AAP
Validation (N= 37) Model

Odds
Ratio

P (Original
Study) Gene

rs13228878 7 142473466 0.40, 0.42, 0.44, 0.39 6 candidate
SNPs*

0.6261 1.275e−05 PRSS1 (+12.54 kb)/
PRSS2 (−6.441 kb)

Previously
validated SNPs†

NA 0.03

rs10436957 1 15768304 0.23, 0.22, 0.19, 0.16 6 candidate
SNPs*

0.6643 0.00199 CTRC (0 kb)

rs10273639 7 142456928 0.41, 0.40, 0.45, 0.36 Previously
validatedSNPs‡

1.4 2.0e−14 PRSS1 (−0.39 kb)/
PRSS2 (−22.98 kb)

rs1505495 4 172973580 0.16, 0.13, 0.17, 0.11 Top 30 PTWG* 0.4974 1.856e−05 GALNTL6 (0 kb)
rs4655107 1 23094454 0.24, 0.22, 0.11, 0.18 Top 30 PTWG* 0.5573 3.972e−05 EPHB2 (0 kb)

*Odds ratio and P-value is obtained from the PTWG AAP GWAS by Wolthers et al.10

†Odds ratio and P-value reported for validated variant from the PTWG AAP GWAS 2019 by Wolthers et al.10

‡Odds ratio and P-value reported as in Table S.3 (Supplemental Digital Content 1, http://links.lww.com/JPHO/A474), Rosendahl et al.19

AAP indicates asparaginase-associated pancreatitis; CEU, Utah Residents (CEPH) with Northern and Western European ancestry; GWAS, genome-wide
association study; NA, not applicable; PTWG, Ponte di Legno toxicity working group; SNPs, single nucleotide polymorphisms.
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FIGURE 3. Personalized artificial intelligence ensemble models based on mean of scores, majority voting and mean of confident scores
(t=0.7). A, ROC curve for the ensemble when predicting on the training data set (N=1290). B and C, Plot of prediction scores vs true
class and table of performance metrics for different score thresholds when scoring the predictions on the training data set (N=1290)
model ensemble with the mean of confident scores (score threshold of ≤0.30 or ≥0.70). D, ROC curve for the ensemble when
predicting on the European hold-out data set (N=100). E and F, Plot of prediction scores versus true class and table of performance
metrics for different score thresholds when scoring the predictions on the European hold-out data set (N=100) model ensemble with the
mean of confident scores (score threshold of ≤0.30 or ≥0.70). G, ROC curve for the ensemble when predicting on the non-European
hold-out data set (N=174). H and I, Plot of prediction scores versus true class and table of performance metrics for different score
thresholds when scoring the predictions on the non-European hold-out data set (N=174) model ensemble with the mean of confident
scores (score threshold of ≤0.30 or ≥0.70). J, ROC curve for the ensemble when predicting secondary AAP cases. K and L, Plot of
prediction scores versus true class and table of performance metrics for different score thresholds when scoring the predictions on the
second AAP phenotype (N=37) model ensemble with the mean of confident scores (score threshold of ≤0.30 or ≥0.70). AAP indicates
asparaginase-associated pancreatitis; AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; ROC,
receiver operating characteristic; Score, applied prediction score threshold for classification (≥ score).
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Using only confident scores (score threshold of ≤0.30 or ≥0.70)
resulted in ROC-AUC: 0.83 on the cross-validation data set
(N=1290) and on the European hold-out test data set (N=100)
(Figs. 3A, D). The ROC-AUC slightly improved from the best
model with age, sex and 30 previously associated AAP SNPs
(ROC-AUC=0.80 to 0.83). For most of the individual pre-
dictions, models with the 30 SNPs associated with AAP were
highly confident compared with other models in the personalized
AI ensemble. However, the combined prediction in the ensemble
helped correct previously false predictions or provide more
confidence to many of the correct predictions (Supplementary
Fig. S.8, Supplemental Digital Content 1, http://links.lww.com/
JPHO/A474). Figures 3B, C, E, and F depict the prediction
scores against their true class as well as estimations of sensitivity,
specificity, positive predictive value (PPV) and negative pre-
dictive value for the personalized AI ensemble model and test
data set performance. We assessed how good the model was in
the extremes of its score distribution. Patients at a high risk of
AAP were identified by setting the prediction threshold of 0.8 in
the trained model and test performance reported in Figures 3B
and C, respectively. In the cross-validation, the sensitivity was
62% with a PPV of 37%, where 262 patients (both case/controls)
had prediction threshold ≥0.8, whereof 96 cases are correctly
predicted in the trained models (Fig. 3C). On the hold-out
European validation data set (N=100), a prediction threshold of
0.8 resulted in sensitivity of 52% and a PPV of 87% where 30
patients (both cases/controls) had a prediction score ≥0.8
whereof 26 AAP cases are correctly predicted (Fig. 3F). Vali-
dation of the personalized AI ensemble model on the non-
European hold-out data set (N=174) resulted in ROC-AUC:
0.73 (Fig. 3G). A prediction threshold of 0.8 resulted in sensi-
tivity of 38% and a PPV of 50% of this group (Fig. 3I). The
personalized AI ensemble model trained on the first AAP event
cases only predicted second AAP following re-exposure to
asparaginase with limited performance (ROC-AUC: 0.55,
Fig. 3J).

Second AAP Following Re-exposure to
Asparaginase

A separate model for re-exposure risk was trained as
the phenotype between first AAP and second AAP patients
may differ. A logistic regression predicted second AAP risk
with ROC-AUC: 0.65, sensitivity: 0.62 and specificity: 0.79
using age, sex and previously validated pancreatitis SNPs

(Supplementary Table S.9, Supplemental Digital Content 1,
http://links.lww.com/JPHO/A474). The model was robust
when comparing the true performance to random second
AAP classification labels (P< < 1e−6, Supplementary Fig.
S.10, Supplemental Digital Content 1, http://links.lww.com/
JPHO/A474). The most important feature was rs12688220
(CLDN2/MORC4) that reduced ROC-AUC with 0.15 when
being left out (Fig. 4).

Impact of Clinical Information Integrated
With Genetic Information on AAP Prediction

Patients treated with the NOPHO ALL-2008 protocol
(N= 892, whereof 77 developed AAP) had more clinical
features available that were integrated in 1 hidden layer
artificial neural network model with the genetic features for
prediction of AAP (Supplementary Table S.11, Supple-
mental Digital Content 1, http://links.lww.com/JPHO/
A474). Patients that developed AAP received fewer aspar-
aginase dosages compared with controls (mean±SD; cases:
7.3 ± 4.4, controls: 12.8 ± 3.3). A model with the 5 most
predictive AAP SNPs (Table 2, binary allele encoding), age
and sex, boosted ROC-AUC from 0.59 (age and sex only) to
0.64 (Supplementary Table S.12, Supplemental Digital
Content 1, http://links.lww.com/JPHO/A474). Additional
clinical features and information of asparaginase random-
ization group in the NOPHO ALL-2008 treatment protocol
(either 2 or 6 weekly-treatment intervals) and the total
number of asparaginase dosages per patient, boosted the
models’ performance to ROC-AUC: 0.86. The most
important features were the asparaginase treatment
randomization group of either 2 or 6 weeks treatment
intervals and the total number of asparaginase dosages per
patient. Exclusion of asparaginase treatment intensity and
dosing features reduced ROC-AUC with 0.24 when esti-
mating the leave-one-group-out feature importance (Sup-
plementary Fig. S.13A, Supplemental Digital Content 1,
http://links.lww.com/JPHO/A474). To confirm the large
impact of the treatment intensity and the total number of
asparaginase dosages on AAP risk prediction, we trained a
LASSO regression model, where the ROC-AUC was: 0.80.
More frequent treatment intervals of asparaginase and fewer
asparaginase dosages were important to predict AAP
(Supplementary Fig. S.13B, Supplemental Digital Content
1, http://links.lww.com/JPHO/A474).

DISCUSSION
Asparaginase is an essential drug for ALL therapy, and

truncation of therapy due to, for example, pancreatitis,
thrombosis, hypersensitivity, or silent inactivation has in
several studies been associated with an increased risk of
relapse.1,6,7 Thus, there is currently an unmet need to
identify patients at high risk of such adverse events which
could guide patient selection for future AAP prevention
trials or to guide clinicians in deciding when re-exposure to
asparaginase is likely to be safe.

We applied machine learning algorithms and inte-
grated multiple SNPs given a clinical baseline model of age
and sex (ROC-AUC: 0.62). Several methodologies were
employed to identify predictive features from a pool of
~1.4M SNPs to provide a sufficiently strong model that
could, if validated by other groups, be clinically applicable
for identification of patients with very high risk of AAP
based on germline predisposition (minimum 80%).
Improvements from 6 candidate SNPs or previously

FIGURE 4. Leave-one-out area under the receiver operating
characteristic curve (ROC-AUC) feature importance for aspar-
aginase-associated pancreatitis re-exposure model using a logistic
regression trained to predict second cases of asparaginase-asso-
ciated pancreatitis when re-exposed to asparaginase (N=37, 13
cases). The model used age, sex, and previously validated single
nucleotide polymorphisms trained with leave-one-out cross-
validation.
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validated SNPs in adult pancreatitis drove performance up
from ROC-AUC: 0.62 to 0.67 and with 30 previously
associated AAP SNPs to ROC-AUC: 0.80 indicating that
germline genetic profiling can significantly assist in the
prediction of some patients at risk of AAP.

The 30 SNPs identified in Wolthers and colleagues
provides the strongest power to detect true findings whereof
rs13228878 and rs10273639 were validated in another
cohort previously.10 A limitation of the feature selection for
the best performing model is that the 30 AAP-associated
SNPs were identified through a GWAS on the same data set
used in this study. Despite this AAP prediction model being
validated on a held-out test data set (ROC-AUC: 0.84),
validation on an external data set must be used before
adaption of such machine learning models in clinic. The
presented AAP models could predict AAP risk for non-
European patients with slightly reduced performance (ROC-
AUC: 0.72) compared with European patients.

It was not possible to obtain similar performance with
other genetic variants identified in prior studies by Liu et al4

or Abaji et al9 of AAP in childhood ALL and these models
only obtained ROC-AUC of 0.60 to 0.63. This is possibly
due to the cohorts of patients being very different, both in
asparaginase exposure and diagnostic criteria of AAP, or
more likely reflected false positive findings as none of the
those SNPs reached GWAS significance.4,9

Feature importance of these AAP prediction models
showed that a combination of all features was required to
achieve clinically useful performance as each feature had
minor impact when being left out on the ROC-AUC. Across
the different models, the most predictive SNPs were
rs10273639 (PRSS1/PRSS2), rs10436957 (CTRC),
rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), and
rs4655107 (EPHB2). PRSS1/PRSS2 and CTRC are
expressed in pancreatic tissue.21 The variants rs10273639
and rs13228878 are located in the PRSS1/PRSS2 locus
which encode trypsinogens that can be cleaved into trypsin
to activate digestive enzymes prematurely leading to cases of
AAP.20 The minor allele of rs13228878 was previously
found to reduce risk of AAP.10 rs10436957 is annotated to
CTRC which encodes the enzyme chymotrypsin C that helps
regulate the activation and degradation of trypsinogens.10,20

GALNTL6 encodes polypeptide N-acetylgalactosaminyl-
transferase-like 6, which is a transferase-like enzyme
involved in the posttranslational process of O-linked gly-
cosylation responsible for transferring N-acetylgalactos-
amine to an exposed serine or threonine.23,24 EPHB2
encodes the transmembrane EPH receptor B2, which is part
of the largest family of tyrosine kinase receptors and capable
of bidirectional signaling through binding with ephrin
ligands on neighboring cells. This signaling is involved in
developmental processes such as cell and axon growth, as
well as involved in cancers.25,26

As different models captured different learnings on
AAP risk, the individual AAP predictions were improved
by an ensemble model approach. This helped correctly re-
classify patients as well as increased the confidence of the
true prediction class. Prediction of AAP cases with high
confidence can motivate increased monitoring of patients
or supportive care. The clinical utility of these models
should be evaluated in future pre-emptive trials. Wrong
predictions, that is, non-AAP risk patients predicted to be
at risk will not experience any negative repercussions in the
clinic. Classification of AAP cases with minimum 80%
confidence was applied when evaluating the model’s

predictive performance. This confidence threshold resulted
in 62% of the true cases to be correctly predicted, with false
positives of 63% on the cross-validated test data sets and
limited to only 13% false positives on the European hold-
out validation data set with 52% of the AAP cases being
correctly identified by the model. It should be noted that
the hold-out validation data set had an artificially high
incidence of AAP (50%) as it was sampled to contain equal
cases and controls. The hold-out validation data set was
sampled and set aside before training of the models.

Prediction of patients who are likely to tolerate re-
exposure of PegAsp after their first AAP episode is currently
one of the most critical questions associated with aspar-
aginase therapy, since truncation of therapy has been asso-
ciated with an increased risk of relapse.1,6,7 However,
neither the AAP phenotype, including severity of the first
AAP, or the age of patients nor SNPs are sufficiently strong
risk factors to guide the re-exposure decision. Currently,
consensus guidelines do not exist, and decisions to re-expose
a patient will thus reflect physicians’ attitudes and gut feel-
ing, and the balance between anticipated risks of a second
AAP versus leukemic relapse.

Thus, separate models were trained on re-exposure
patients resulting in the most predictive model being a
logistic regression with ROC-AUC: 0.65. rs12688220
(CLDN2/MORC4) was most predictive of a second AAP,
which is previously associated with adult pancreatitis.18,19

The present study has limited power for prediction of
second AAP, but the PTWG is currently collecting very
detailed data on > 100 patients re-exposed with PegAsp
after AAP of whom ~40% are expected to develop AAP.
Since a second AAP episode usually occurs after several
doses of PegAsp, future developments of this tool could
increase the number of patients that will be re-exposed to
asparaginase.

The potential clinical utility of the models should be
evaluated in the light of predictive performance as well as
their interpretability of features which is an important
challenge to address for adaptation into clinic.27 The
machine learning models learn patterns from data which
can be complex and nonlinear and achieve good predictive
performance, while the feature importance—especially
with complex feature interaction—at the individual
patient level can be harder to identify. Since asparaginase
is an essential drug in the treatment of childhood ALL, the
model should primarily identify patients with a very high
risk of developing AAP, which could guide patient selec-
tion for future AAP prevention trials, and potentially also
patient selection for asparaginase re-exposure. On the path
towards clinical translation of an AAP prediction model,
it is also important to know the time to AAP or infor-
mation on additional clinical events such as severity or
necrotizing at the first AAP event for prediction of second
AAP. Other clinical features were only reported for AAP
cases and not controls, and furthermore were incon-
sistently recorded and thus had a high level of missing
values. This motivates the importance of more rigorous
data collection to gain further insights of clinical features
for prediction. With the available data, the main scope of
this study was to identify predictive genetic predisposition
to AAP and second AAP risk—however more rigorous
clinical data collection across collaborative cohorts in the
future would offer the opportunity to build richer models
that can integrate a wider clinical context with genetics in
building predictors.
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For a subset of the patients treated with the NOPHO
ALL-2008 protocol, more frequent treatment intervals of
asparaginase and fewer asparaginase dosages was identified
as the most important features to predict AAP. The fewer
asparaginase dosages reported for the AAP cases reflects
truncation of treatment as controls would receive further
dosages. A suggested follow-up study is integrating the
number of asparaginase doses with the identified predictive
SNPs and account for the time to event to determine the
timing of a patient’s risk of AAP.

In conclusion, this study supports the impact of host-
genome variants on risk of AAP and exemplifies strategies
for applying predictive modeling on other severe acute
toxicities to ALL therapy.

ACKNOWLEDGMENTS

The authors thank Olga Rigina for functional annotation
and extraction of prioritized genetic variants from Ensembl.
Moreover, the authors thank all the researchers who scruti-
nized patient files and completed phenotype questionnaires,
and organizational support from the research staff at Bon-
kolab, at the University Hospital Rigshospitalet. Lastly, they
thank the Bloodwise Childhood Leukaemia Cell Bank, UK,
for providing samples and data for this research.

REFERENCES
1. Pieters R, Hunger SP, Boos J, et al. L-asparaginase treatment in

acute lymphoblastic leukemia: a focus on Erwinia asparaginase.
Cancer. 2011;117:238–249.

2. Müller HJ, Boos J. Use of L-asparaginase in childhood ALL.
Crit Rev Oncol Hematol. 1998;28:97–113.

3. Hijiya N, van der Sluis IM. Asparaginase-associated toxicity in
children with acute lymphoblastic leukemia. Leuk Lymphoma.
2016;57:748–757.

4. Liu C, Yang W, Devidas M, et al. Clinical and genetic risk
factors for acute pancreatitis in patients with acute lympho-
blastic leukemia. J Clin Oncol. 2016;34:2133–2140.

5. Rank CU, Wolthers BO, Grell K, et al. Asparaginase-
associated pancreatitis in acute lymphoblastic leukemia: results
from the NOPHO ALL2008 treatment of patients 1-45 years of
age. J Clin Oncol. 2020;38:145–154.

6. Gupta S, Wang C, Raetz EA, et al. Impact of asparaginase
discontinuation on outcome in childhood ALL: a report from
the Children’s Oncology Group (COG). J Clin Oncol. 2019;37
(suppl):10005.

7. Gottschalk Højfeldt S, Grell K, Abrahamsson J, et al. Relapse
risk following truncation of pegylated-asparaginase in childhood
acute lymphoblastic leukemia. Blood. 2021;137:2373–2382.

8. Wolthers BO, Frandsen TL, Baruchel A, et al. Asparaginase-
associated pancreatitis in childhood acute lymphoblastic
leukaemia: an observational Ponte di Legno Toxicity Working
Group study. Lancet Oncol. 2017;18:1238–1248.

9. Abaji R, Gagné V, Xu CJ, et al. Whole-exome sequencing
identified genetic risk factors for asparaginase-related complica-
tions in childhood ALL patients.Oncotarget. 2017;8:43752–43767.

10. Wolthers BO, Frandsen TL, Patel CJ, et al. Trypsin-encoding
PRSS1-PRSS2 variations influence the risk of asparaginase-
associated pancreatitis in children with acute lymphoblastic
leukemia: a ponte di legno toxicity working group report.
Haematologica. 2019;104:556–563.

11. Wesołowska-Andersen A, Borst L, Dalgaard MD, et al. Genomic
profiling of thousands of candidate polymorphisms predicts risk of
relapse in 778 Danish and German childhood acute lymphoblastic
leukemia patients. Leukemia. 2015;29:297–303.

12. Pan L, Liu G, Lin F, et al. Machine learning applications for
prediction of relapse in childhood acute lymphoblastic leuke-
mia. Sci Rep. 2017;7:1–9.

13. Albertsen BK, Grell K, Abrahamsson J, et al. Intermittent
versus continuous PEG-asparaginase to reduce asparaginase-
associated toxicities: a NOPHO ALL2008 randomized study.
J Clin Oncol. 2019;37:1638–1646.

14. Schmiegelow K, Attarbaschi A, Barzilai S, et al. Consensus
definitions of 14 severe acute toxic effects for childhood
lymphoblastic leukaemia treatment: a Delphi consensus. Lancet
Oncol. 2016;17:e231–e239.

15. Python Software Foundation. Python, version 3.6.8. 2018.
Available at: www.python.org/. Accessed January 6, 2020.

16. Pedregosa F, VaroquauxG, Gramfort A, et al. Scikit-learn:Machine
Learning in Python. J Mach Learn Res. 2011;12:2825–2830.

17. Whitcomb DC, Larusch J, Krasinskas AM, et al. Common genetic
variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-
related and sporadic pancreatitis. Nat Genet. 2012;44:1349–1354.

18. Derikx MH, Kovacs P, Scholz M, et al. Polymorphisms at
PRSS1-PRSS2 and CLDN2-MORC4 loci associate with
alcoholic and non-alcoholic chronic pancreatitis in a European
replication study. Gut. 2015;64:1426–1433.

19. Rosendahl J, Kirsten H, Hegyi E, et al. Genome-wide
association study identifies inversion in the CTRB1-CTRB2
locus to modify risk for alcoholic and non-alcoholic chronic
pancreatitis. Gut. 2018;67:1855–1863.

20. Zator Z, Whitcomb DC. Insights into the genetic risk factors
for the development of pancreatic disease. Therap Adv Gastro-
enterol. 2017;10:323–336.

21. The GTEx Consortium. The Genotype-Tissue Expression
(GTEx) project. Nat Genet. 2013;45:580–585.

22. Yates A, Beal K, Keenan S, et al. The Ensembl REST API:
Ensembl Data for Any Language. Bioinformatics. 2015;31:143–145.

23. Van Den SP, Rudd PM, Dwek RA, et al. Concepts and
Principles of O-Linked Glycosylation. Crit Rev Biochem Mol
Biol. 1998;33:151–208.

24. UniProtKB-Q49A17 (GLTL6_HUMAN). Integrated into Uni-
ProtKB/Swiss-Prot: March 18, 2008. 2010. Available at: https://
www.uniprot.org/uniprot/Q49A17. Accessed November 22, 2019.

25. Himanen J, Chumley MJ, Lackmann M, et al. Repelling class
discrimination: ephrin-A5 binds to and activates EphB2
receptor signaling. Nat Neurosci. 2004;7:501–509.

26. UniProtKB-P29323 (EPHB2_HUMAN). Integrated into Uni-
ProtKB/Swiss-Prot: December 1, 1992. 2005. Available at: www.
uniprot.org/uniprot/P29323. Accessed November 22, 2019.

27. Prosperi M, Min JS, Bian J, et al. Big data hurdles in precision
medicine and precision public health. BMC Med Inform Decis
Mak. 2018;18:1–15.

Nielsen et al J Pediatr Hematol Oncol � Volume 44, Number 3, April 2022

e636 | www.jpho-online.com Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

http://www.python.org/
http://www.uniprot.org/uniprot/Q49A17
http://www.uniprot.org/uniprot/Q49A17
http://www.uniprot.org/uniprot/P29323
http://www.uniprot.org/uniprot/P29323

