30 research outputs found

    Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Get PDF
    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9(T), was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9(T) is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448(T). The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9(T) (=NCIMB 14965(T)=NRRL B65268(T)). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-017-0838-2) contains supplementary material, which is available to authorized users

    Tuning plasmons on nano-structured substrates for NIR-SERS

    No full text
    Surface-Enhanced Raman Spectroscopy (SERS) is a very sensitive and selective technique for detecting surface species. Colloidal crystal-templated 'inverse opal' nanostructured gold films have been demonstrated to be excellent SERS substrates by various researchers around the globe. However, visible excitation laser sources commonly used in SERS experiments can cause photochemical reactions on the surface as well as fluorescence from the adsorbed molecules. A way to circumvent this possibility is the use of Near Infra-Red (NIR) laser sources. This demands appropriate design of substrates for NIR-SERS in order to obtain maximum enhancement of signals from analytes. In the current paper, we use systematic variation of sphere size and electrochemical control over film height to tune plasmons on such nanovoid substrates. We use plasmon maps as a tool for predicting NIR-SERS enhancements recorded with a 1064 nm laser source for benzenethiol as the probe molecule. Direct correlation is observed between Raman enhancements and plasmonic resonances with ingoing and outcoming radiation. Our study demonstrates the feasibility of plasmon engineering and the predictive power of their mapping on our substrates. It also demonstrates the ability to design reproducible NIR-SERS substrates and its empirical fruition

    Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons

    No full text
    We study the optical plasmonic properties of metal surfaces which have a periodic lattice of voids buried immediately beneath their flat upper surface. Light reflection spectra calculated in the framework of a selfconsistent electromagnetic multiple-scattering layer-KKR approach exhibit two types of plasmon resonances originating from the excitation of different plasmon modes: surface plasmon-polaritons propagating on the planar surface of metal and Mie plasmons localized in the buried voids. Coupling between these two types of plasma oscillation leads to an enhancement of the surface plasmon-polariton resonances even for close-packed void lattices. Our theoretical model quantitatively agrees with experimental results, demonstrating that planar surfaces can exhibit strong plasmonic field enhancements
    corecore