69 research outputs found

    Nursing Activity Sensing Using Mobile Sensors and Proximity Sensors

    Get PDF
    In recent years, big data are utilized in many industries.In this study, in order to analyze duties of thenurses, we performed experiments to collect the dutiesactivity data of the nurses for a long term. Weset 38 nurses as subjects and asked them to carry outduties while attaching a wearable small sensor device,and collected the acceleration data, meeting informationbetween nurses and the nurse duties information.In addition, we collected the location information of the nurses by using infrared information and communication equipment at the same time. From various data collected, we analyzed intensity and positional information of duties activity of the nurse, meeting information and the duties information between nurses and considered the influence that each factor affected to the nurse. As the result, we found that intensity of the activity increases in such nurses as who has many times of meeting with other nurses, visits the patient room many times, or who works on jobs concerning with the assistance of the patients such as rehabilitation assistance duties or the activity assistance dutiesThe 47th ISCIE International Symposium on Stochastic Systems Theory and Its Applications (SSS\u2715), December 5-8, 2015, Waikiki Beach Marriott Resort & Spa, Hawaii, US

    RUNX inhibitor suppresses graft‐versus‐host disease through targeting RUNX‐NFATC2 axis

    Get PDF
    Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M’, which is the inhibitor that switches off the entire RUNX family by alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M’ also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M’ showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M’ injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD

    A RUNX-targeted gene switch-off approach modulates the BIRC5/PIF1-p21 pathway and reduces glioblastoma growth in mice

    Get PDF
    Glioblastoma is the most common adult brain tumour, representing a high degree of malignancy. Transcription factors such as RUNX1 are believed to be involved in the malignancy of glioblastoma. RUNX1 functions as an oncogene or tumour suppressor gene with diverse target genes. Details of the effects of RUNX1 on the acquisition of malignancy in glioblastoma remain unclear. Here, we show that RUNX1 downregulates p21 by enhancing expressions of BIRC5 and PIF1, conferring anti-apoptotic properties on glioblastoma. A gene switch-off therapy using alkylating agent-conjugated pyrrole-imidazole polyamides, designed to fit the RUNX1 DNA groove, decreased expression levels of BIRC5 and PIF1 and induced apoptosis and cell cycle arrest via p21. The RUNX1-BIRC5/PIF1-p21 pathway appears to reflect refractory characteristics of glioblastoma and thus holds promise as a therapeutic target. RUNX gene switch-off therapy may represent a novel treatment for glioblastoma

    RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia

    Get PDF
    The emergence of tyrosine kinase inhibitors as part of a front-line treatment has greatly improved the clinical outcome of the patients with Ph⁺ acute lymphoblastic leukemia (ALL). However, a portion of them still become refractory to the therapy mainly through acquiring mutations in the BCR-ABL1 gene, necessitating a novel strategy to treat tyrosine kinase inhibitor (TKI)-resistant Ph⁺ ALL cases. In this report, we show evidence that RUNX1 transcription factor stringently controls the expression of BCR-ABL1, which can strategically be targeted by our novel RUNX inhibitor, Chb-M'. Through a series of in vitro experiments, we identified that RUNX1 binds to the promoter of BCR and directly transactivates BCR-ABL1 expression in Ph⁺ ALL cell lines. These cells showed significantly reduced expression of BCR-ABL1 with suppressed proliferation upon RUNX1 knockdown. Moreover, treatment with Chb-M' consistently downregulated the expression of BCR-ABL1 in these cells and this drug was highly effective even in an imatinib-resistant Ph⁺ ALL cell line. In good agreement with these findings, forced expression of BCR-ABL1 in these cells conferred relative resistance to Chb-M'. In addition, in vivo experiments with the Ph⁺ ALL patient-derived xenograft cells showed similar results. In summary, targeting RUNX1 therapeutically in Ph⁺ ALL cells may lead to overcoming TKI resistance through the transcriptional regulation of BCR-ABL1. Chb-M' could be a novel drug for patients with TKI-resistant refractory Ph⁺ ALL

    Hog1-mediated stress tolerance in the pathogenic fungus Trichosporon asahii

    No full text
    Abstract Trichosporon asahii is an opportunistic pathogenic fungus that causes severe and sometimes fatal infections in immunocompromised patients. Hog1, a mitogen-activated protein kinase, regulates the stress resistance of some pathogenic fungi, however its role in T. asahii has not been investigated. Here, we demonstrated that the hog1 gene-deficient T. asahii mutant is sensitive to high temperature, cell membrane stress, oxidative stress, and antifungal drugs. Growth of the hog1 gene-deficient T. asahii mutant was delayed at 40 °C. The hog1 gene-deficient T. asahii mutant also exhibited sensitivity to sodium dodecyl sulfate, hydrogen peroxide, menadione, methyl methanesulfonate, UV exposure, and antifungal drugs such as amphotericin B under a glucose-rich condition. Under a glucose-restricted condition, the hog1 gene-deficient mutant exhibited sensitivity to NaCl and KCl. The virulence of the hog1 gene-deficient mutant against silkworms was attenuated. Moreover, the viability of the hog1 gene-deficient mutant decreased in the silkworm hemolymph. These phenotypes were restored by re-introducing the hog1 gene into the gene-deficient mutant. Our findings suggest that Hog1 plays a critical role in regulating cellular stress responses in T. asahii

    Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions

    Get PDF
    急性骨髄性白血病の新しい転写因子調節メカニズムを解明 --従来とは逆にがん抑制遺伝子をターゲットにした治療戦略を提唱--. 京都大学プレスリリース. 2017-08-09.Besides being a classical tumor suppressor, runt-related transcription factor 1 (RUNX1) is now widely recognized for its oncogenic role in the development of acute myeloid leukemia (AML). Here we report that this bidirectional function of RUNX1 possibly arises from the total level of RUNX family expressions. Indeed, analysis of clinical data revealed that intermediate-level gene expression of RUNX1 marked the poorest-prognostic cohort in relation to AML patients with high- or low-level RUNX1 expressions. Through a series of RUNX1 knockdown experiments with various RUNX1 attenuation potentials, we found that moderate attenuation of RUNX1 contributed to the enhanced propagation of AML cells through accelerated cell-cycle progression, whereas profound RUNX1 depletion led to cell-cycle arrest and apoptosis. In these RUNX1-silenced tumors, amounts of compensative upregulation of RUNX2 and RUNX3 expressions were roughly equivalent and created an absolute elevation of total RUNX (RUNX1 + RUNX2 + RUNX3) expression levels in RUNX1 moderately attenuated AML cells. This elevation resulted in enhanced transactivation of glutathione S-transferase α 2 (GSTA2) expression, a vital enzyme handling the catabolization of intracellular reactive oxygen species (ROS) as well as advancing the cell-cycle progressions, and thus ultimately led to the acquisition of proliferative advantage in RUNX1 moderately attenuated AML cells. Besides, treatment with ethacrynic acid, which is known for its GSTA inhibiting property, actually prolonged the survival of AML mice in vivo. Collectively, our findings indicate that moderately attenuated RUNX1 expressions paradoxically enhance leukemogenesis in AML cells through intracellular environmental change via GSTA2, which could be a novel therapeutic target in antileukemia strategy
    corecore