107 research outputs found

    Postnatal Development of Hepatic Innate Immune Response

    Get PDF
    The liver is an immunocompetent organ that plays a key role in the immune response to infections, and the development of hepatic immune function during early postnatal stages has not been thoroughly characterized. This study analyzed the constitutive expression of complement factors, namely C3 and C9, and pattern recognition receptors, namely CD14, toll-like receptor (TLR)-4, and lipopolysaccharide binding protein (LBP), in the liver of postnatal day (P)1, P21, and P70 rats, and compared the kinetics of induction of cytokines and chemokines in the liver of P 1 and P 21 animals. Our studies found that while the mRNA expression of C3, C9, CD14, and TLR-4 was lower in P1 animals, the mRNA level of LBP was higher in P1 animals as compared to older animals, and that the kinetics of induction of cytokines and chemokines was significantly delayed in P1 as compared to P21 liver following LPS stimulation. Our data suggest that hepatic innate immunity is deficient in the neonates and undergo significant development during early postnatal life

    PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients

    Get PDF
    Cystic fibrosis (CF) is a common life-threatening autosomal recessive disorder in the Caucasian population, and the gene responsible is the CF transmembrane conductance regulator (CFTR). Patients with CF have repeated bacterial infection of the airways caused by Pseudomonas aeruginosa (PA), which is one of the predominant pathogen, and endobronchial chronic infection represents a major cause of morbidity and mortality. Pentraxin 3 (PTX3) is a gene that encodes the antimicrobial protein, PTX3, which is believed to have an important role in innate immunity of lung. To address the role of PTX3 in the risk of PA lung colonization, we investigated five single nucleotide polymorphisms of PTX3 gene in 172 Caucasian CF patients who were homozygous for the F508del mutation. We observed that PTX3 haplotype frequencies were significantly different between patients with PA colonization, as compared with noncolonized patients. Moreover, a protective effect was found in association with a specific haplotype (odds ratio 0.524). Our data suggest that variations within PTX3 affect lung colonization of Pseudomonas in patients with CF

    Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    Get PDF
    BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells

    Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44<sup>+</sup>/CD24<sup>- </sup>stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44<sup>+</sup>/CD24<sup>- </sup>subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression?</p> <p>Methods</p> <p>Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment.</p> <p>Results</p> <p>MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (<it>PIK3R1</it>, <it>SOCS2</it>, <it>BMP7</it>, <it>CD44 </it>and <it>CD24</it>). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells.</p> <p>Conclusions</p> <p>MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.</p
    corecore