1,681 research outputs found

    Multiaxis thrust vectoring using axisymmetric nozzles and postexit vanes on an F/A-18 configuration vehicle

    Get PDF
    A ground-based investigation was conducted on an operational system of multiaxis thrust vectoring using postexit vanes around an axisymmetric nozzle. This thrust vectoring system will be tested on the NASA F/A-18 High Alpha Research Vehicle (HARV) aircraft. The system provides thrust vectoring capability in both pitch and yaw. Ground based data were gathered from two separate tests at NASA Langley Research Center. The first was a static test in the 16-foot Transonic Tunnel Cold-Jet Facility with a 14.25 percent scale model of the axisymmetric nozzle and the postexit vanes. The second test was conducted in the 30 by 60 foot wind tunnel with a 16 percent F/A-18 complete configuration model. Data from the two sets are being used to develop models of jet plume deflection and thrust loss as a function of vane deflection. In addition, an aerodynamic interaction model based on plume deflection angles will be developed. Results from the scale model nozzle test showed that increased vane deflection caused exhaust plume turning. Aerodynamic interaction effects consisted primarily of favorable interaction of moments and unfavorable interaction of forces caused by the vectored jet plume

    Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT

    Get PDF
    Telomere homeostasis is regulated by telomerase and a collection of associatedproteins. Telomerase is, in turn, regulated by post-translational modifications of the rate-limiting catalytic subunit hTERT. Here we show that disruption of Hsp90 by geldanamycin promotes efficient ubiquitination and proteasome-mediated degradation of hTERT. Furthermore, we have used the yeast two-hybrid method to identify a novel RING finger gene (MKRN1) encoding an E3 ligase that mediates ubiquitination of hTERT. Overexpression of MKRN1 in telomerase-positive cells promotes the degradation of hTERT and decreases telomerase activity and subsequently telomere length. Our data suggest that MKRN1 plays an important role in modulating telomere length homeostasis through a dynamic balance involving hTERT protein stability

    Endothelial-to-Osteoblast Transition in Normal Mouse Bone Development

    Get PDF
    Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow– and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs

    ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs

    Get PDF
    Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced ‘browning’ in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow

    Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice

    Get PDF
    Radium 223 (Ra-223) is an Îą-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223

    Implementation of the Tobacco Tactics intervention versus usual care in Trinity Health community hospitals

    Get PDF
    Abstract Background Guided by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) implementation framework, a National Institutes of Health-sponsored study compared the nurse-administered Tobacco Tactics intervention to usual care. A prior paper describes the effectiveness of the Tobacco Tactics intervention. This subsequent paper provides data describing the remaining constructs of the RE-AIM framework. Methods This pragmatic study used a mixed methods, quasi-experimental design in five Michigan community hospitals of which three received the nurse-administered Tobacco Tactics intervention and two received usual care. Nurses and patients were surveyed pre- and post-intervention. Measures included reach (patient participation rates, characteristics, and receipt of services), adoption (nurse participation rates and characteristics), implementation (pre-to post-training changes in nurses' attitudes, delivery of services, barriers to implementation, opinions about training, documentation of services, and numbers of volunteer follow-up phone calls), and maintenance (continuation of the intervention once the study ended). Results Reach: Patient participation rates were 71.5 %. Compared to no change in the control sites, there were significant pre- to post-intervention increases in self-reported receipt of print materials in the intervention hospitals (n = 1370, p < 0.001). Adoption: In the intervention hospitals, all targeted units and several non-targeted units participated; 76.0 % (n = 1028) of targeted nurses and 317 additional staff participated in the training, and 92.4 % were extremely or somewhat satisfied with the training. Implementation: Nurses in the intervention hospitals reported increases in providing advice to quit, counseling, medications, handouts, and DVD (all p < 0.05) and reported decreased barriers to implementing smoking cessation services (p < 0.001). Qualitative comments were very positive (“user friendly,” “streamlined,” or “saves time”), although problems with showing patients the DVD and charting in the electronic medical record were noted. Maintenance: Nurses continued to provide the intervention after the study ended. Conclusions Given that nurses represent the largest group of front-line providers, this intervention, which meets Joint Commission guidelines for treating inpatient smokers, has the potential to have a wide reach and to decrease smoking, morbidity, and mortality among inpatient smokers. As we move toward more population-based interventions, the RE-AIM framework is a valuable guide for implementation. Trial registration ClinicalTrials.gov, NCT0130921

    Differential IL-21 signaling in APCs leads to disparate Th17 differentiation in diabetes-susceptible NOD and diabetes-resistant NOD.Idd3 mice.

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated. Here we show that T cells from NOD mice produce more Il21 and less Il2 and exhibit enhanced Th17 cell generation compared with T cells from NOD.Idd3 congenic mice, which carry the protective Idd3 allele from a diabetes-resistant mouse strain. Further, APCs from NOD and NOD.Idd3 mice played a central role in this differential Th17 cell development, and IL-21 signaling in APCs was pivotal to this process. Specifically, NOD-derived APCs showed increased production of pro-Th17 mediators and dysregulation of the retinoic acid (RA) signaling pathway compared with APCs from NOD.Idd3 and NOD.Il21r-deficient mice. These data suggest that the protective effect of the Idd3 locus is due, in part, to differential RA signaling in APCs and that IL-21 likely plays a role in this process. Thus, we believe APCs provide a new candidate for therapeutic intervention in autoimmune diseases

    Neutralisation of SARS-CoV-2 by anatomical embalming solutions.

    Get PDF
    Teaching and learning anatomy by using human cadaveric specimens has been a foundation of medical and biomedical teaching for hundreds of years. Therefore, the majority of institutions that teach topographical anatomy rely on body donation programmes to provide specimens for both undergraduate and postgraduate teaching of gross anatomy. The COVID-19 pandemic has posed an unprecedented challenge to anatomy teaching because of the suspension of donor acceptance at most institutions. This was largely due to concerns about the potential transmissibility of the SARS-CoV-2 virus and the absence of data about the ability of embalming solutions to neutralise the virus. Twenty embalming solutions commonly used in institutions in the United Kingdom and Ireland were tested for their ability to neutralise SARS-CoV-2, using an established cytotoxicity assay. All embalming solutions tested neutralised SARS-CoV-2, with the majority of solutions being effective at high-working dilutions. These results suggest that successful embalming with the tested solutions can neutralise the SARS-CoV-2 virus, thereby facilitating the safe resumption of body donation programmes and cadaveric anatomy teaching
    • …
    corecore